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Abstract Decision making is a vital aspect of our everyday functioning, from simple perceptual

demands to more complex and meaningful decisions. The strategy adopted to make such decisions

is often viewed as balancing elements of speed and caution, i.e. making fast or careful decisions. Us-

ing sequential samplingmodels to analyse decisionmaking data can allow us to tease apart strategic

differences, such as being more or less cautious, from processing differences, which would other-

wise be indistinguishable in behavioural data. Our study used amultiple object tracking task where

student participants and a highly skilled military group were compared on their ability to track

several items at once. Using a mathematical model of decision making (the linear ballistic accu-

mulator), we show the underpinnings of how two groups differ in performance. Results showed a

large difference between the groups on accuracy, with the Royal Australian Air Force (RAAF) group

outperforming students. An interaction effect was observed between groups and level of difficulty

in response times, where RAAF response times slowed at a greater rate than the student group as

difficulty increased. Model results indicated that the RAAF personnel were more cautious in their

decisions than students, and had faster processing in some conditions. Our study shows the strength

of sequential sampling models, as well as providing a first attempt at fitting a sequential sampling

model to data from a multiple object tracking task.
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Introduction

The practice of cognitive psychometrics has contributed

greatly to our understanding of human decision making

(Batchelder, 2010). Sequential sampling models are a

prime example of this discipline, in which latent psycho-

logical processes are represented by parameters of the

quantitative model (Donkin, Averell, Brown, & Heathcote,

2009). How these parameters change in different deci-

sion making contexts allows inferences to be made about

the influence of specific cognitive processes across tasks

and groups. For instance, these models have been able to

show parameter shifts in simple perceptual tasks (Brown &

Heathcote, 2008; Ratcliff, Gomez, & McKoon, 2004), as well

as in more complex tasks (e.g., Hawkins et al., 2014; Ho et

al., 2014). Parameter shifts include the strategies under-

taken by participants, such as being more fast or cautious

in responding (Rae, Heathcote, Donkin, Averell, & Brown,

2014; Evans, Rae, Bushmakin, Rubin, & Brown, 2017), the

speed in which different groups process information (Du-

tilh, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2009;

Ratcliff, Thapar, & McKoon, 2010), or a combination of

these factors. Further examples of sequential sampling

models have accounted for a range of decision-making

data across age groups (Forstmann et al., 2011), person-

ality groups (Evans et al., 2017), clinical groups (e.g., de-

pression and schizophrenia; Dillon et al., 2015; Heathcote

et al., 2015), and groups differing in blood alcohol levels

(van Ravenzwaaij, Dutilh, & Wagenmakers, 2012).

Sequential samplingmodels posit that before a decision

is made, evidence in favour of competing responses is se-

quentially sampled from the environment until a decision

criterion (known as the threshold) is reached, triggering a

decision response. When the threshold is set high, more
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Figure 1 The LBAmodel of decision-making which explains the trade off between speed and caution. A basic framework

for a simple two choice paradigm is shown. The two accumulators “race” by accumulating evidence for either decision

before reaching the response threshold. The first accumulator to reach the threshold triggers the associated decision.

evidence must be sampled from the environment, result-

ing in slower responses. When it is set low, the decision

will be quicker. These models also account for the time

taken to perceive the information, the time taken to make

a response and any bias an individual may have towards

a particular choice. There are a variety of decision mak-

ing models, however, one of the most commonly used is

the linear ballistic accumulator model (LBA), illustrated in

Figure 1. The LBA simplifies the processes of sampling by

approximating the sampling as linear, where two separate

accumulators represent separate response choices.

We often observe differences and interactions in re-

sponse times (and accuracy) between experimental condi-

tions and groups, however, we do not always have insight

into what may lead to these differences. Sequential sam-

pling models can assist in explaining underlying psycho-

logical processes through parameter estimation, and fur-

ther, indicate that different individuals may use different

decision strategies. The key success of sequential sampling

models is that they allow us to analyse both response time

and accuracy data together, as well as using the entirety of

the response time distribution. This allows us to predict

the precise quantitative relationship between speed and

accuracy whilst also specifying how much a person’s error

rate varies as a function ofmillisecond changes in response

time (Heitz & Schall, 2012). However, the greatest bene-

fit of these models is that they allow for the comparison

of psychological theories about the use of decision strate-

gies in different contexts and between distinct groups. Hy-

potheses about how specific cognitive processes should

work can be translated into specific predictions about how

the parameters of the model will be affected by different

experimental manipulations. We can then directly com-

pare alternate models with differing parameterisations, as

we would directly compare hypotheses. As outlined above,

it is evident that different groups may show varying re-

sponse times and accuracy, however, there are benefits in

considering themultiple components that contribute to the

decision process and explain these response time and accu-

racy differences (Starns & Ratcliff, 2010; Forstmann et al.,

2011; Heathcote et al., 2015). These components can in-

clude the strategy someone chooses to take (for example

sacrificing accuracy for speed), varying processing speeds

between individuals or certain biases towards particular

responses.

Due to the benefits of sequential sampling models, this

mathematical technique has been applied to a range of de-

cision making tasks. These tasks include standard cogni-

tive paradigms such as go/no-go tasks (Gomez, Ratcliff, &

Perea, 2007), absolute identification tasks (Brown, Marley,

Donkin, & Heathcote, 2008), as well as more complex tasks

such as discrete choice experiments (Hawkins et al., 2014),

recognition memory paradigms (Ratcliff & Starns, 2009;

Ratcliff, Thapar, & McKoon, 2011; Rae et al., 2014; Osth,

Jansson, Dennis, & Heathcote, 2018) and unmanned aerial

vehicle operation (Palada et al., 2016). One task which has

been broadly used to model perceptual processes is the

multiple object tracking (MOT) task, however, there has not

yet been an attempt to understand the underlying decision

process.

The MOT task involves participants tracking a number

of objects within a display of distractor objects (tracking

period) before deciding which objects were the targets. In

this decision (interrogation) phase, they are either asked to

identify the targets themselves, or they are asked sequen-

tially whether a certain object was originally a target. An

example of this task can be seen in Figure 2. Pylyshyn and

Storm (1988) originally proposed the experiment to test

how many items could be tracked simultaneously. Accu-

racy is the main dependent variable in the MOT, with accu-
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Figure 2 Illustration of the MOT task. The target dot is shown in blue during the encoding phase. All of the dots move

randomly about the display. After a short amount of time, the target changes colour to be the same as the distractors.

In the tracking phase, dots move around randomly (and can cross over) for an extended amount of time. Finally, in the

interrogation phase, motion of the dots stops. Participants are then asked to sequentially classify highlighted dots (shown

in black) as targets or non-targets.

racy generally decreasing as the number of objects to track

increases. This is to be expected, as researchers observe

that small subsets of objects are easily tracked over the

course of each trial (generally around 15 seconds of track-

ing), whereas larger subsets of targets may lead to the loss

of tracking among the distractor items (Pylyshyn & Storm,

1988).

Pylyshyn and Storm (1988) initially found that people

could track up to eight items simultaneously, with the MOT

task providing a new method to study object based atten-

tion. Cavanagh and Alvarez (2005) note the importance of

the Pylyshyn and Storm (1988) study as a means of provid-

ing evidence against many attentional theories at the time,

which posited a single focus view. In the MOT, individuals

did not have to directly look at each individual stimulus,

but rather, could track the motion of several items whilst

focusing on a central reference point. Further studies of

the MOT have focused on the task purely from a percep-

tual standpoint, opting to analyze eye-tracking data and

proposing models of possible mechanisms used to track

multiple objects (Scholl & Pylyshyn, 1999; Cavanagh & Al-

varez, 2005; Drew, McCollough, Horowitz, & Vogel, 2009).

These mechanisms can be thought of as either ‘blob’ track-

ing (where targets can merge and split; Haritaoglu, Har-

wood, & Davis, 1998), be viewed in a minimum amount

of separation framework (Rasmussen & Hager, 1998), or

by incorporating 3D geometric elements to distinguish be-

tween targets (Koller, Weber, & Malik, 1994). These studies

present strong arguments and robust models of tracking,

however, the decision making element of the task is yet to

be formally investigated or modelled.

Relying on MOT accuracy alone may be misleading be-

cause it gives no insight into latent processes we know are

involved in decision making. For example, some individ-

uals may be more cautious when responding, leading to

slower response times but increases in accuracy. Applying

a sequential sampling model to MOT decision processes,

such as the LBA, could serve to identify underlying strate-

gic differences between individuals as well as inherent dif-

ferences in ability. Factors such as the total number of ob-

jects an individual can track, tracking ability and decision

caution may vary between individuals, impacting results

in obscure ways. Using a sequential samplingmodel would

allow us to move beyond assessing just accuracy, by allow-

ing us to capture the shape of the response time distribu-

tion across both correct and error responses in the interro-

gation phase of the MOT.

Similar principles that have been used to model deci-

sions in recognition memory tasks with the LBA and Dif-

fusion models (e.g., Ratcliff & Starns, 2009; Ratcliff et al.,

2011; Dube, Starns, Rotello, & Ratcliff, 2012; Rae et al., 2014;

Ratcliff & McKoon, 2015; Aschenbrenner, Balota, Gordon,

Ratcliff, & Morris, 2016; Osth, Bora, Dennis, & Heathcote,

2017; Osth et al., 2018) could be used to model decision

processes in the MOT. The MOT decision phase, which fol-

lows the tracking phase, could be modelled by evidence ac-

cumulation, analogous to how the recognition phase in a

memory task, which occurs after the study phase, is mod-

elled by evidence accumulation. Similar to modelling de-

cisions made in recognition memory experiments, we as-

sume that the decision process only commences when the

stimuli are directly interrogated, with participants sam-

pling evidence from an internal representation. The MOT

is a complex taskwhich involvesmultiple components and,

much like recognition memory modelling research, we do

not attempt to model the entire task. Instead, the LBA can

be used to gain useful insights into strategies and processes

occurring during the decision making component of the
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MOT.

With sequential sampling methods often enabling a

deeper understanding of the decision making process and

underlying strategy, we proposed an experiment which

tested two divergent groups on varying levels of MOT.

A large proportion of modelling studies that compare

across groups have tended to focus on cognitive deficits

associated with certain groups (e.g., aging populations;

Forstmann et al., 2011; , schizophrenia; Heathcote et al.,

2015; and depression; Dillon et al., 2015) rather than a

“proficiency”. However, our study aimed to compare a stu-

dent control group to a group of highly trained Royal Aus-

tralian Air Force (RAAF) personnel as a means of under-

standing potential differences in cognitive decision mak-

ing processes. The RAAF personnel were recruited as part

of a selection program for a role which required candi-

dates to cope with significant mental demands over an ex-

tended period of time, such as war zone air traffic control.

The tracking and workload component of the MOT task

therefore appears to resemble a situation in which com-

bat controllers should perform well. To be eligible for the

role, candidatesmust have skills in reconnaissance, assault

zone control, clearance of an airfield, meteorology obser-

vation, military tactics and first completed a battery of cog-

nitive and physical tests. Due to the sensitive nature of this

position, this battery of tests is kept confidential.

We proposed a simple MOT task with three levels of

difficulty (indexed by the number of objects to track).

We compared results across two distinct groups; psychol-

ogy undergraduate students and RAAF personnel – com-

bat controller program candidates. The RAAF group com-

pleted the task as part of a training and selection program.

Selected candidates for the program are given intense spe-

cialised training over an 18month period. Further, combat

controller personnel are highly sought after, and the po-

sition is lucrative within military contexts. Consequently,

we expected the RAAF group to value accuracy over speed

and be more cautious, as errors may have a negative im-

pact on their selection. Due to the element of potential se-

lection, we expected that this would increase motivation

in the RAAF group (comparatively to the student group

who had no incentive to perform), and further, due to this

motivation to perform well, it was possible that the RAAF

group would pay closer attention to the task, which could

lead to an overall higher drift rate (Smith & Ratcliff, 2009;

Nunez, Vandekerckhove, & Srinivasan, 2017). Therefore,

we hypothesized that the RAAF group would have higher

accuracy and lower response time in the MOT compared

to students. Finally, we hypothesized that divergent de-

cision strategies would emerge in the parameters under-

pinning this behavioural data, with the RAAF group setting

higher thresholds and displaying higher drift rates across

difficulty conditions.

Method

Participants

Two groups completed the task. The RAAF group was com-

prised of 39 Royal Australian Air Force personnel (all of

whom were male) who were selected to train for a com-

bat controller course. The RAAF group was tested as part

of the combat controller course selection procedures. The

student group was comprised of two sub-groups who com-

pleted alternate testing sessions; an online session which

consisted of 64 University of Newcastle undergraduate stu-

dents who completed the task in their own time online; and

an in lab session which consisted of 28 undergraduate stu-

dents from the University of Newcastle who completed the

task at the same time at the University campus. Three stu-

dent participants were excluded from the analysis due to

computer-based errors in data.

Tasks

The MOT was displayed on a computer in front of the

seated participants. All participants completed the same

task. TheMOT required participants to trackmultiplemov-

ing objects (coloured dots) within a circular display of 150

pixels (corresponding to a visual angle of 2◦) for a short
period of time (15s). The task had three phases; the encod-

ing phase, the tracking phase and the interrogation phase

(shown in Figure 2). In the encoding phase the target dots

were blue, and all other dots were red. After three seconds

of movement, the target dots turned red and the tracking

phase began. All dots moved within the display area at a

frame rate of 15 frames per second for the duration of a

trial and participants were required to track themovement

of the indicated target dots. In the interrogation phase,

movement stopped and five dots were highlighted at ran-

dom (one at a time). For each of those five dots, the partic-

ipants were required to indicate whether each had been a

tracked target, using the keyboard (either the “P” and “O”

keys, or the “Q” and “W” keys, depending on handedness).

Participants were given feedback following the completion

of the test phase, for example, “Good work! For this trial

you identified 3 out of 5 dots correctly”.

There were three levels of difficulty in the MOT; 0, 1

or 4 dots to track. This was manipulated within-subjects.

Across all difficulty levels, there was a total of ten dots on

screen (comprised of the number of targets and distractor

objects). The dots were circular, with a diameter of 14 pix-

els, and were restricted by the display area so that they

were always in fovea. The dots’ motion did not follow any

uniform direction as it was randomly sampled across each

frame, but could only change direction by up to 15◦ during
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Figure 3 Illustration of the concurrent display of the MOT (red dots) and DRT (red border) stimuli. The DRT component

flashed on intermittently and the red dots moved around the display area randomly throughout a trial. The display area

was a 150 pixel circle which did not overlap with the DRT stimulus.

each frame. This meant that the dots motion was some-

what autocorrelated from one frame to the next, however,

the path of the object could not be anticipated. The dots

could spatially overlap. If the motion of a dot was about to

take it off the edge of the display, it was reflected, so that

dots appear to bounce off the sides of the display.

A detection response task (DRT) was also carried out

during the tracking phase of the MOT. For the purposes of

the current study, the DRT data was not analyzed. DRT im-

plementation generally adhered to ISO 17488 (2016) guide-

lines. The DRT only occurred during the tracking phase of

the MOT, where a red frame appeared around the display,

as shown in Figure 3. Participants were asked to respond

to each elicitation of the stimulus using the keyboard (ei-

ther “T” or “Y” keys, depending on handedness). The red

frame stayed on screen for 1 second or until the participant

responded to it (whichever occurred first). Time between

successive DRT stimuli was randomly distributed between

2-4 seconds.

Procedure

Participants completed the task on a computer, with re-

sults recorded online. Participants were given instructions

on screen which first introduced the DRT procedure and

then the MOT procedure.

Participants completed a practice block followed by

nine test phase blocks. Each block consisted of ten trials

of the MOT, with the exception of the initial practice block

which only consisted of three trials. Difficulty was pre-

sented sequentially in each block, with the sequential or-

der randomised between subjects. Within each test block,

all of the trials used the same number of dots to be tracked:

either 0, 1 or 4. In the practice block, participants tracked

2 dots. Each of these three levels of MOT were used for

three blocks, giving a total of 30 MOT trials for each diffi-

culty (number of dots to track). Within each trial, partici-

pantsmade five decisions for theMOT task, giving a total of

150 decisions per difficulty. Participants were given breaks

between blocks, and the total time taken to complete the

experiment was between 1-1.5 hours. Response time and

accuracy were recorded.

Analysis

Analysis for the experiment included inferential Bayesian

analysis of differences between conditions and groups for

accuracy and response time in the MOT task. We used JASP

to conduct the Bayesian ANOVAs and t-tests (JASP Team,

2019). Following this, the LBA was separately fit to the de-

cision making data of participants in each group to sep-

arate the between-groups performance differences from

strategy differences. In the current task, the LBA model

assumes that each decision is a race between evidence ac-

cumulators for responding “non-target” or “target” to each

interrogated dot. Each accumulator gathers evidence un-

til a threshold is hit, whereby the participants make that

decision. The sequential sampling process is simple and

linear with several assumptions for each decision being

made. The sequential sampling process has a rate, or speed
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of processing, which varies randomly from trial to trial

according to a normal distribution, since factors such as

arousal and attention are assumed to fluctuate across tri-

als (Donkin & Brown, 2018). Similarly, each accumulator

starts with an amount of evidence (a starting point), which,

on each trial, is a random value drawn from a uniform dis-

tribution.

Despite the participants being exposed to the stimulus

in the tracking phase, they are not required to make a de-

cision until the interrogation phase. Therefore we view

the interrogation phase as the decision phase of the experi-

ment, with five decisions per trial of the MOT. In modelling

the decision strategies and processes of the decision phase

of the MOT task, we assume that as soon as a single dot is

cued for interrogation, the evidence accumulation process

commences for the decision of whether to respond “tar-

get” or “non-target”, with participants sampling evidence

from an internal representation. This is the same principle

used to model decisions in recognition memory research,

where participants are first exposed to the stimuli and at a

later point asked to make a decision regarding these stim-

uli (e.g., Ratcliff, 1978; Ratcliff & Starns, 2009; Ratcliff & Van

Dongen, 2011; Dube et al., 2012; Rae et al., 2014; Aschen-

brenner et al., 2016; Osth et al., 2017; Osth et al., 2018).

The parameters of the model were as follows; the

threshold (or amount of evidence required for a response

to be made), b; the drift rate or average speed of accumula-
tion, v; the range of start points, A; the standard deviation
of drift rates across trials, s; and the non-decision time, or
time accounted for by processes unrelated to the decision

process such as encoding and responding time, T0 (Brown
& Heathcote, 2008). In any one condition, there is an ac-

cumulator for the choice of responding with “target” and

an accumulator for responding with “non-target”, and the

parameters for each accumulator were not the same. For

example, with regards to drift rate, the accumulator that

matches the correct response (correct drift vc) will have a
higher average drift rate across trials compared to the ac-

cumulator that does not match the correct response (error

drift ve). Drift rates for each accumulator were allowed
to vary across difficulty conditions, as responding “non-

target” in the 0 dot condition should take little processing,

compared to the 4 dot condition where evidence may ac-

cumulate at a slower rate given the increased difficulty.

This decision is supported by literature suggesting that in-

creased workload affects drift estimates (Tillman, Strayer,

Eidels, & Heathcote, 2017; Castro, Strayer, Matzke, & Heath-

cote, 2019). The threshold (b) parameter factored in bi-
ases in responding and was allowed to vary as a function

of both response (“target” or “non-target”) and difficulty

(since bias toward the “non-target” response should reduce

when there are more targets to track). For example, in the

1 dot condition, it would be sensible to show a bias toward

responding “non-target”, since 9 of the 10 dots shown to

participants were not targets to track. This bias also meant

that in the 0 dot condition, it was always the case that par-

ticipants should respond “non-target”, hence why parame-

ter estimates for responding “target” show a large amount

of error. Since the encoding and motor response demands

should be identical in the 0, 1, and 4 dot load conditions,

we did not allow T0 to vary as a function of difficulty (for
examples, see Voss, Rothermund, & Voss, 2004; Dutilh et al.,

2019), however, we conducted exploratory analysis regard-

ing T0 differences across difficulty, which are discussed in
our results.

The above outlines our complex model where both v
and b were able to vary across difficulties for each accu-
mulator. However we also considered two simpler mod-

els; one which only enabled v to vary across difficulties
for each accumulator and one which only enabled b to
vary across difficulties for each accumulator. All models

included a threshold (b) parameter which factored in the
biases in responding discussed above.

It should be noted that in the 0 dot condition, there is

no choice to be made. However, fitting the LBA to the 0 dot

condition provides information about motor-processing.

This is not a novel approach to fitting data without a

choice (e.g., see LATER model in Noorani & Carpenter,

2016). Across all conditions, we fit a two-accumulator

model. An alternative approach to this would be to fit a

one-accumulator model in the 0 dot condition. In our two-

accumulator model, the model is free to capture the data

trend (i.e. not responding “target”) by freely estimating a

large “target” threshold. Furthermore, the posterior distri-

bution for some parameters under the 0 dot condition will

be unconstrained by data (as the “target” response in the

0 dot condition had few data, and consequently, the poste-

rior is not estimated). As a result, in the 0 dot condition, our

two-accumulator model is the numerical equivalent to fit-

ting a one-accumulator model. Analysis not reported here

confirmed this. Whilst choosing to fit a one-accumulator

model would be a simpler model with respect to number of

parameters, the two accumulator model provides a more

simple explanation of the decision process, with model

consistency across all task conditions. Although fitting the

0 dot condition tells us nothing about decision strategies,

we are able to use these estimates to compare simple reac-

tion time between the student and RAAF samples.

The three models were fit separately to the student and

RAAF data. We estimated parameters for each group from

the model using a Bayesian hierarchical approach. Each

subject was allowed individual parameters which were

constrained to follow truncated (positive only) normal dis-

tributions. At the group level, each of these parameters
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Figure 4 Response time distributions for the position of each sequential decision during the interrogation phase. In the

interrogation phase, decision number one is the first decision made in each MOT trial and five is the final decision made

relating to the previous MOT trial. As can be seen, the distribution of response times for the first decision is very different

to the overlapping distributions for decisions two through to five.

0.0000

0.0005

0.0010

0.0015

0 1000 2000 3000 4000

Response Time

de
ns

ity

Response Position 1 2 3 4 5

varied across the mean and standard deviation. Unin-

formative and diffuse priors were specified. Group level

mean parameter priors were truncated normal distribu-

tions and priors for standard deviation of the group level

distributions were gamma. For a full overview of the prior

distributions, see Appendices.

Samples were drawn from the posterior distribution

using a differential evolution Markov chain Monte-Carlo

method (de MCMC; Turner, Sederberg, Brown, & Steyvers,

2013). We ran 25 identical chains in parallel, with 500 iter-

ations for burn-in and 1000 iterations for convergence for

each group. The initial group level samples were drawn

from the prior distributions and the subject level samples

were randomly drawn from broad distributions of param-

eter values, covering a range wider than general LBA fits

in simple decision making experiments.

A point estimate of caution threshold for each partici-

pant was calculated from the posterior distributions of the

parameters of the winning LBA model. This is calculated

as the mean value of b − A/2 across the posterior sam-
ples. The drift rate was similarly calculated for each group

across conditions and response types. For the sake of sim-

plicity, we compare vc (correct drift) to ve (error drift) and
bT (“Target” response threshold) to bNT (“Non-Target” re-

sponse threshold) across difficulty and between groups.

Results

MOT response times greater than 2000ms were removed,

however, there was no lower bound for response times.

The reason for keeping response times under 200ms was

that in some trials short response times were expected.

For example in the 1 dot to track condition, if the target

was identified early in the interrogation phase, only ’no’

responses should remain, meaning participants could re-

spond before perceiving or processing the remaining dis-

tractors. The first response in each trial was also removed.

These responses were removed as the mean response

times were affected by task switching costs (from the DRT

to the MOT and from tracking to responding), meaning the

distribution of response timeswas neither shifted nor a lin-

ear increase, but rather a distribution which was unrep-

resentative of participant responding. Figure 4 shows the

distribution of response times for decision positions of the

interrogation phase, where the first choice (shown in grey)

is vastly different from the other four response positions.

For the Bayesian inferential statistics, we treated our

study as a two-way mixed design, with the within-subject

variable of difficulty (number of dots to track in the MOT –

0, 1 or 4) and the between-subject variable of group (RAAF

or student). We assessed the response time and the pro-

portion correct for responses to theMOT.We used two-way

Bayesian repeated measures ANOVAs for each of the above

measures of interest.
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Figure 5 Response times (left) and accuracy (right) across conditions of dots to track for both groups in the MOT task.

Error bars are 95% confidence intervals.
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The average proportion of correct responses in the

MOT was 83.9% and average RT was .608 seconds. The

change in RT across the different levels of difficulty and

between groups can be observed in the left panel of Fig-

ure 5, with mean proportion correct shown in the right

panel. Mean RT increased and mean proportion correct

decreased as the level of difficulty increased. For mean RT

there appears to be a crossover interaction effect of group

and difficulty, where the RAAF group were faster in the 0

dot condition, but slower in the 4 dot condition. For mean

proportion correct, it is clear that the RAAF group showed

higher mean proportion correct across all levels of diffi-

culty.

Bayesian ANOVAs showed a strong preference for the

model that included the main effects of difficulty, group

& interaction between these two factors for mean RT

(BF10 > 1000) and a preference for the model that only
included the main effects of difficulty and group for mean

proportion correct (BF10 > 1000).
Bayesian paired samples t-tests revealed that these dif-

ferences were reliable between all levels of difficulty for

mean RT (0 dots vs. 1 dot, BF10 > 1000; 1 dot vs. 4
dot, BF10 > 1000) and for some levels of proportion cor-
rect (0 dots vs. 1 dot, BF10 = 0.109; 1 dot vs. 4 dots,
BF10 > 1000). Bayesian independent samples t-tests also
revealed strong evidence for differences in mean RT be-

tween the RAAF and student groups in the 0 and 4 dot con-

ditions (0 dots, BF10 = 11.86; 4 dots, BF10 = 23.45),
but not in the 1 dot condition (BF10 = 0.208). There was
strong evidence for a difference in proportion correct be-

tween groups in the 1 and 4 dot difficulty conditions (1 dot,

BF10 = 14.41; 4 dots, BF10 = 26.41), but no reliable dif-
ference in the 0 dot condition (0 dots, BF10 = 1.79). It is
important to note the crossover interaction of groups and

difficulty on mean RT, clearly illustrated on the left panel

of Figure 5. This interaction may be the result of a strate-

gic shift and/or processing difference between the groups,

processes which could be investigated via sequential sam-

pling modelling. These overall patterns are consistent with

findings that increasing task difficulty leads to decreased

response time and accuracy. The results show trends in

line with our first hypothesis, with the RAAF group out-

performing the student group for accuracy measures, but

unexpectedly showing a crossover interaction effect for re-

sponse times (where the RAAF group were faster in the 0

dot condition, but slower in the 4 dot condition).

Model Fit

To asses the goodness-of-fit of our models we chose to base

our judgements on graphical evidence instead of any nu-

merical index. The graphical approach and the statistical

approach to model selection both show varying strengths

and weaknesses (Shiffrin, Lee, Kim, &Wagenmakers, 2008;

Wagenmakers, Lee, Lodewyckx, & Iverson, 2008; Evans &

Brown, 2018), with current goodness of fit methods un-

able to solve the dilemma of model inference (Dutilh et al.,

2019). As shown in Figure ?? in Appendices, the predic-

tions of the v only and b only models were clearly incon-
sistent with the data. The v+bmodel, displayed in Figure 6,
showed a much better fit.
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Figure 6 Model fits for both response time (left) and accuracy (right). The bars indicate the data and the dots indicate

the model predictions. Error bars for the dots are the inter-quartile range across different samples from the posterior.

Three panels are included for each statistic representing the three levels of dots to track. Correct response types (“target”

or “non-target”) are shown on the x-axis. In the 0 dot condition, only “non-target” responses are shown as there were no

targets and so there was no probability of having a correct “target” response.
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With a tightly constrained model, varying across v
and b, the winning model fits the data well, as shown
in Figure 6. Figure 6 shows the model predictions (dots)

against the observed data (bars), with the inter-quartile

range for the model included. We show both the mean

response times (left panel) and proportion of correct re-

sponses (right panel) across response types (“target” and

“non-target”) for all three conditions of dots to track. For

the model, the mean and inter-quartile range was calcu-

lated from 100 posterior predicted samples per subject, for

both groups.

On inspection, the winning model appears to capture

the key trends in the data and follows an expected pattern,

with no gross misfit. Figure 7 and Figure 8 show response

time and accuracy data (respectively) for the posterior pre-

dictive data plotted against the observed data. Figure 7

shows that the model appears to capture the trends in re-

sponse time across the quantile range for the three condi-

tions of difficulty. Figure 8 shows that themodel accurately

captures accuracy trends in the 4 dot condition, but ap-

pears to underestimate accuracy in the 1 dot condition for

a subset of the student group. This may be due to students

using cognitive “shortcuts” in this condition, where fast

“non-target” guesses will produce higher accuracy than

predicted. Both Figure 7 and Figure 8 highlight that as dif-

ficulty increases, response time increases and proportion

correct decreases across both “target” and “non-target” re-

sponses. In the 0 dot condition, participants have fast re-

sponse times and close to perfect accuracy, which is cap-

tured by the model (shown in Figure 6). This is similar in

the 1 dot condition, where we see a high proportion correct

for “non-target” responses and a slightly lower proportion

correct for “target” responses (as is expected based on the

low frequency of correct “target” responses). An associated

increase in response time is also captured by the model

with participants responding slower in more difficult con-

ditions than in the 0 dot condition, and slower to “target”

responses than to “non-target” responses. The 4 dot condi-

tion shows a change in responding, as “target” responses

have a faster response time, but lower accuracy. This may

be due to the difficulty of the condition rather than purely a

bias in responding, but is captured by the model. Although

the model estimates are a close fit across the data there

is a slight misfit for the RAAF group in the highest diffi-

culty. It is evident that the model slightly overestimates

the RAAF group proportion correct on “target” responses

and underestimates “non-target” responses. Furthermore,

there is a slight misfit for the RAAF group response times,

with the model overestimating response times for “target”

conditions.

With a clear threshold effect across difficulty condi-

tions, driven by inbuilt task biases we considered the pos-
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Figure 7 Model fit for the posterior predictive response times (y-axis) against the data (x-axis). The two groups are

represented by different shapes (circles for RAAF and triangles for students). Each participant has three coloured dots

in each panel representing the lower quartile (blue), upper quartile (red) and median values. A y = x diagonal line is
shown. Each panel shows the fit under each of the difficulty conditions.
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sibility that T0 may also change across difficulty condi-
tions (Dutilh et al., 2019). We therefore conducted ex-

ploratory post-hoc analyses of the data, where we looked

at the fastest 1% of responses in the 0, 1, and 4 dot condi-

tions for both groups, since changes in the leading edge of

the response time distribution have been taken to indicate

changes in non-decision time (Ratcliff & Tuerlinckx, 2002).

Figure 9 shows the fastest 1% of responses for both the

RAAF group and student group. The figure indicates that

these response times increased as difficulty increased, indi-

cating a possible T0 effect. More interestingly however, the
model generated posterior predictive data shows trends

consistent with this pattern. This analysis indicates that,

although the difficulty condition did shift the leading edge

of the response time distribution, the winning v+b model
captured this effect, and these changes are consistent with

changes in threshold.

Model Results

Given the winning LBA model accounts for changes in re-

sponse time and proportion correct by varying v and b, we
can observe the change to these parameters in Figure 10.

Figure 10 shows the v parameter (left panel) for correct (vc)
and error (ve) responses and b (right panel) for responding
“non-target” (bNT ) and “target” (bT ) across levels of diffi-
culty for both groups. We show that as difficulty increases,

vc decreases and bNT increases. The decrease in vc indi-
cates that the difficulty manipulation slows the rate of pro-

cessing at the decision level. The increase in bNT as diffi-

culty increases is in line with the expected proportion of

responding “non-target”, with bNT low for both groups at

the 0 dot condition, but gradually increasing with added

targets. We also show that bT decreases from being ex-
tremely high at the 0 dot condition, to almost the same as

bNT at the 4 dot condition.

The differences between groups is also evident in Fig-

ure 10 and 11. The b parameter shows a large differ-
ence in response thresholds between RAAF and students.

RAAF personnel display higher thresholds at all levels of

difficulty and response types, possibly indicating a greater

level of caution. For v, there is little difference between the
RAAF and student groups across difficulty levels, however

the vc parameter for 1 dot to track does show some differ-
ence with RAAF personnel showing higher drift for correct

responses. Combining both v and b provides a clear ex-
planation for the effects observed at response time and ac-

curacy levels. The RAAF personnel display higher thresh-

olds in the more difficult conditions leading to higher ac-

curacy than the students and slower response times. This

is not true of the 1 dot condition, where despite the RAAF

thresholds being higher, response times show no differ-

ence to students. This may be accounted for by a faster

drift rate observed at vc. Finally, Figure 11 shows a clear
difference in the b parameter between RAAF and student
groups. This parameter was used to calculate the bias in

bNT and bT , and shows a more efficient strategy used by
the RAAF group to set their threshold bias.
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Figure 8 Model fit for the posterior predictive accuracy (y-axis) against the data (x-axis). The two groups are represented

by different shapes (circles for RAAF and triangles for students). A y = x diagonal line is shown. Each panel shows the
fit under each of the difficulty conditions.
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Figure 9 Fastest 1% of response times across difficulty conditions, shown for both groups (RAAF left and Students right).

Colour indicates the data generating source, where “data” is taken from the behavioural data and “model” is taken from

the posterior predictive samples. Error bars indicate 95% confidence intervals.
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Discussion

Evidence accumulation models are emerging as a domi-

nant method of analysis for a wide variety of decisionmak-

ing tasks because they allow us to discriminate between

the effects of latent cognitive processes. These decision

making theories propose that we require set amounts of

evidence for each response option before we make a deci-

sion. It is this “threshold”, as well as the rate of processing,

non-decision time and certain cognitive biases that play a

role in not only the speed of a decision, but also the accu-

racy. How these elements are traded off against each other

has been shown to vary across tasks and populations.

Data from decisions in the MOT task is typically anal-

ysed only through a traditional hypothesis testing lens,

looking at differences in accuracy and response time data,

but not accounting for any speed-accuracy trade off or joint

distribution. Here we show that sequential sampling mod-

els can be fit to decision data from the MOT to reveal un-

derlying decision strategies used by different groups. Fur-

ther, since prior research has tended to focus on investi-

gating cognitive deficits within certain populations, rather

than proficiencies (e.g., Dillon et al., 2015; Forstmann et al.,

2011; Heathcote et al., 2015; van Ravenzwaaij et al., 2012),

it was opportunistic to model the decision strategies and

processes from a tightly selected group of RAAF personnel.

Initial basic analysis revealed trends consistent with

hypotheses; that increasing the difficulty of the MOT task

led to a deterioration of performance (slower response

times and lower accuracy), and that the RAAF group out-

performed the students in their proportion of correct re-

sponses. We did not expect to find an interaction between
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Figure 10 Parameter estimates for v and b across both groups and conditions. For the v parameter plot, each condition
(0,1 and 4 dots to track) has two associated parameters - vc for correct responses; and ve for error responses. Similarly, in
the b plot, each condition has two parameters - bNT the threshold for responding “non-target” and bT the threshold for
responding “target”.
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Figure 11 Violin plots of posterior distributions of parameter estimates for the two groups. T0 is not shown here as there
was no group differences and relatively small estimates.

groups and difficulties for response time data, however,

this provided a strong exemplar of why further modelling

should be undertaken. In modelling this data, we found

that response threshold and rate of processing may pro-

vide an account for the large difference in both speed and

accuracy between a highly trained RAAF group and a con-

trol student group. The RAAF group appear to set higher

thresholds for the 1 dot condition, but this is moderated by

their superior drift rates, whichmay explain why the RAAF

group had higher accuracy, but no difference in response

times in this condition. In the 4 dot condition, the RAAF

group appear to set higher thresholds, but have a similar

drift rate to the student group, which is consistent with the

finding that the RAAF had slower response times, but re-

tained their higher level of accuracy. It is not clear as to

why the RAAF group had a higher drift rate for the cor-

rect accumulator in the 1 dot condition but not the 4 dot

condition. A possible explanation for this phenomenon is

a ceiling effect in the most difficult condition. Other fac-

tors such as attention, incentive and cognitive ability may

have also contributed to this effect, however these are dif-

ficult to quantify from the data. As only 0, 1 and 4 dot con-

ditions were observed, it would be of interest to also test

participants at 2 and 3 dot conditions to see if differences

in processing speed followed a linear decay under these in-

termediate conditions.

In the MOT task, it was clear that increasing the num-

ber of dots to track leads to a marked decrease in accuracy,

as has been shown in previous studies (Pylyshyn & Storm,

1988; Pylyshyn, 2004). This is especially prevalent between
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the 1 dot and 4 dot conditions. This performance decrease

indicates the high difficulty of the task at the higher level

of dots to track. Furthermore, when observing response

times, it is clear that increased difficulty contributed to an

increase in decision time. When accounting for groups,

it is evident that the RAAF group outperforms the student

group at all levels of MOTwhen observing accuracy scores.

However, there is a clear crossover interaction effect ob-

served in mean response times between groups and levels

of difficulty. Whilst the RAAF group had a faster mean re-

sponse time than the students in the 0 dot condition, they

have a slower mean response time in the 4 dot condition.

A more informative model-based approach enables insight

into underlying cognitive processes, in order to see what

causes differences in descriptive data.

The winning model appeared to fit the data well, how-

ever a slight misfit was observed in the posterior predic-

tive data for the accuracy of the student group in the 1 dot

condition (as shown in Figure 8). For the student group,

the model under-predicted the level of accuracy for a sub-

set of students, however, the nature of biased responding

may mean there are “shortcuts” that contribute to this ef-

fect. That is, in the 1 dot condition, a participant could

choose to guess in some trials by only responding “non-

target” and still exhibit high accuracy and fast response

times. Another possibility for the under-fit relates to the

high sequential dependence in the 1 dot condition (partic-

ipants are unlikely to make multiple “target” responses in

one MOT trial). The model also showed a slight misfit (as

seen in Figure 6) for the RAAF when responding “target”,

slightly overestimating their response time and underesti-

mating proportion correct. This misfit should be consid-

ered when modelling such data in future and could poten-

tially be addressed with more interrogations per trial in

the MOT or through building a joint model which factors

in sequential effects in responding or the between subjects

effects of groups.

The current study is limited in that we do not account

for DRT data, which is part of a broader project, nor do we

account for the sequential effects of the response position.

DRT data could be highly informative to the model with

a between task trade off evaluated alongside the speed-

accuracy trade off of both tasks. However, this modelling

approach would require a more sophisticated analysis in

combining two different types of data from two divergent,

semi-parallel tasks. We decided to exclude data from the

first response given after each MOT tracking period due to

task switching demands causing an increase in the first re-

sponse time, however, these responses could provide infor-

mative data if they were modelled effectively. Models that

account for this may then provide information about the

task switching costs aswell as the underlying decision com-

ponents. The current model treats all sequential decisions

as independent, thus not accounting for any secondary se-

quential effects of prior responses, which may be particu-

larly prevalent in the 1 dot condition. More advancedmod-

elling strategies might attempt to include these secondary

effects and see how this affects the interpretation of the

key latent psychological processes and strategies we were

interested in. Future experiments should look to extend

the number of decisions made in the interrogation phase

to cover all of the objects in the display. Further advanced

modelling exercises should also be undertaken tomake use

of the well researched tracking models in conjunction with

the decision processes.

Despite these limitations, our study provides the first

use of a sequential sampling models for decisions in the

MOT task to our knowledge, but more-so we highlight

the importance of deeper investigation into participant re-

sponding. Our results clearly show a difference in re-

sponding between the two groups, with the RAAF group

showing higher accuracy. However, it is only through a

model framework that we are able to tease apart group dif-

ferences and show evidence of underlying processes that

may be responsible for the overall differences.
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Appendices

The v+b LBA Model

The winning LBA model that allowed drift rate and threshold to vary across conditions. This model also builds the b
parameter bias:

Data level :

(RT, resp) ∼ LBA(Ai, b
′
T , b
′
NT , vj.T,i, vj.NT,i, sT = 1, sNT = 1, t0,i)

b′T = Ai + bi(1 + (2 × tanh(Bj) − 1))

b′NT = Ai − bi(1 + (2 × tanh(Bj) − 1))

Where i = person and j = condition

Group level :

Ai ∼ N+(µA, σA)

b{0,1,4}.T,i ∼ N+(µb,{0,1,4}.T , σb,{0,1,4}.T )

b{0,1,4}.NT,i ∼ N+(µb,{0,1,4}.NT , σb,{0,1,4}.NT )

v{0,1,4}.T,i ∼ N+(µv,{0,1,4}.T , σv,{0,1,4}.T )

v{0,1,4}.NT,i ∼ N+(µv,{0,1,4}.NT , σv,{0,1,4}.NT )

t0,i ∼ N+(µt0, σt0)

Prior distributions :

µA, µb,0, µb,1, µb,4 ∼ N+(2, 2)

µv,T,0, µv,T,1, µv,T,4, µv,NT,0, µv,NT,1, µv,NT,4 ∼ N+(3, 3)

µt0 ∼ N+(.5, .5)

σA, σb, 0, σb,1, σb,4 ∼ Γ(1, 1)

σv,T,0, σv,T,1, σv,T,4, σv,NT,0, σv,NT,1, σv,NT,4 ∼ Γ(1, .5)

σt0 ∼ Γ(1, 3)

For the model, i indexes participants and j indexed the level of dots to track. The data level distribution was an LBA
model with eight parameters, and the data to which this was applied consisted of six response time distributions (correct

and incorrect responses at each level of dots to track) and two response probabilities (the proportions of correct responses

in each condition).
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Model Fits for b–only and v–only

Model fits for both response time (left) and accuracy (right). The bars indicate the data and the dots indicate the model

predictions. Error bars for the dots are the inter-quartile range across different samples from the posterior. Three panels

are included for each statistic representing the three levels of dots to track. Correct response types (“target” or “non-

target”) are shown on the x-axis. In the 0 dot condition, only “non-target” responses are shown as there were no targets

and so there was no probability of having a correct “target” response. The shape of the dot indicates the generating

model.
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