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Abstract
Cognitive workload is assumed to influence performance due to resource competition. However, there is a lack of evidence for a
direct relationship between changes in workloadwithin an individual over time and changes in that individual’s performance.We
collected performance data using a multiple object-tracking task in which we measured workload objectively in real-time using a
modified detection response task. Using a multi-level Bayesian model controlling for task difficulty and past performance, we
found strong evidence that workload both during and preceding a tracking trial was predictive of performance, such that higher
workload led to poorer performance. These negative workload-performance relationships were remarkably consistent across
individuals. Importantly, we demonstrate that fluctuations in workload independent from the task demands accounted for
significant performance variation. The outcomes have implications for designing real-time adaptive systems to proactively
mitigate human performance decrements, but also highlight the pervasive influence of cognitive workload more generally.
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Introduction

Understanding the causes of variance in human performance
is a key goal of psychology. In particular, there is an urgent
need to predict human performance decrements in a variety of
industrial, transportation, military, and medical contexts, to
design resilient work systems (Boehm-Davis, Durso, & Lee,
2015). If we can predict poor performance before it occurs, we
may be able to intervene to increase workplace efficiency and
prevent human error. Adaptive human-machine (automation)
systems have been proposed to track information about task
demands and operator state to modify work systems to proac-
tively mitigate human performance deficits (Feigh, Dorneich,
& Hayes, 2012). Although this concept has a long history
(Rouse, 1988), there are challenges to practical implementa-
tion (Sauer, Kao, & Wastell, 2012). We propose that

objectively measuring operator cognitive workload might bet-
ter allow prediction of future operator performance.

The term workload describes the relationship between task
demands and available human mental capacity, and is a criti-
cal construct for understanding performance (Young,
Brookhuis, Wickens, & Hancock, 2015). High mental work-
load has been associated with accident risk in various work
domains (e.g., Chen, Song, & Lin, 2016; Habib, Shalkamy, &
El-Basyouny, 2019). There are a variety of subjective and
objective measures of workload (Charles & Nixon, 2019;
Matthews, Reinerman-Jones, Barber, & Abich, 2015;
Thorpe, Nesbitt, & Eidels, 2020). In general, they are all based
on the assumption that workload will vary as a function of task
demand and the limited human information-processing re-
sources available to meet those demands (Gopher, &
Donchin, 1986). The relationship between workload and per-
formance is complex, and performance does not always suffer
with increased workload (Hancock & Matthews, 2019). This
suggests that workload and performance are different con-
structs, and can dissociate (Wickens, 2008). However, most
theories of workload predict performance impairments with
increased workload, due to competition for shared resources
(Young et al., 2015). Many prior studies linking workload and
performance have used cross-sectional designs that aggregate
repeated measurements from individuals to evaluate between-
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person or between-task effects. While this level of analysis is
often sufficient (e.g., assessing impact of training), it cannot
indicate what level of performance to expect for a specific
individual at a given workload. To our knowledge, a real-time
association between objectively measured workload and per-
formance has yet to be demonstrated, despite proponents of
workload-based adaptive automation assuming this relation-
ship exists.

We aimed to examine the extent to which an objective
measure of workload could predict variation in individual per-
formance. The primary task was a multiple-object-tracking
task (Innes, Evans, Howard, Eidels & Brown, 2019;
Pylyshyn & Storm, 1988), which is broadly representative of
a range of work contexts such as air traffic control, train con-
trol, and maritime surveillance (Loft, Neal, Sanderson, &
Mooij, 2007). Workload was objectively measured using a
secondary task that required individuals to respond to tran-
siently presented signals. We demonstrate that changes in an
individual’s workload both preceding and during the perfor-
mance period of the tracking task can predict unique variance
in performance after controlling for task difficulty and past
performance.

Workload and performance

A fundamental tenant of cognitive psychology is the limited-
capacity nature of human information processing (Kahneman,
1973; Norman & Bobrow, 1975). It is assumed that humans
have a finite pool of cognitive resources to allocate to tasks
(often termed resource capacity). The amount of resources
(relative to capacity) needed to handle task load is known as
cognitive or mental “workload.” More demanding tasks re-
quire a higher level of “workload” on average (Young et al.,
2015). Workload at the between-person level represents dif-
ferences between individuals in resource capacity and the abil-
ity to self-regulate that capacity as a function of task demands,
and also reflects individual differences in skill (Hockey,
1997). Higher average workload can indicate that, compared
to others, an individual’s capacity is exceeded, which can
degrade performance compared to others.

Here, we are concerned with how fluctuations in an indi-
vidual’s workload relate to changes in their own moment-to-
moment performance. There are many reasons an individual’s
workload may fluctuate independent of their task. Some the-
ories posit that “mental resources” are a literal resource(s) that
can be dynamically allocated (Kahneman, 1973; Wickens,
2002), and others extend this concept to assume these re-
sources deplete over time (e.g., Baumeister, 2014; Hagger
et al., 2010). Kurzban, Duckworth, Kable, and Myers (2013)
suggest that the allocation of resources leads to an
opportunity-cost to which the operator may be sensitive. It is
also true that humans are prone to mind-wandering

(Thompson, Besner, & Smilek, 2015), which reduces the at-
tentional resources available. Other theories propose time-
dependent workload increases (e.g., the well-known vigilance
decrement has been attributed to workload decrements over
time; Grier et al., 2003). Importantly, while theories may dif-
fer on the proposed mechanisms underlying fluctuating work-
load, almost all predict that workload will fluctuate, and that
higher workload should lead to performance decrements. We
consider whether and how performance changes when work-
load measurably fluctuates.

Surprisingly, only two studies have examined the relation-
ship between workload and performance in real-time (as
opposed to aggregated at a manipulation level, such as easy
vs. difficult; Loft et al., 2018; Mracek, Arsenault, Day, Hardy,
& Terry, 2014). Both showed that increased workload for an
individual (i.e., increased workload relative to one’s own av-
erage workload) was associated with a decrease in subsequent
performance (i.e., decreased performance relative to one’s av-
erage performance) in command and control tasks. However,
these studies have several limitations, particularly that they
assessed workload subjectively. Subjective workload ratings
reflect the relationship between perceived task demands and a
self-appraisal of resource capacity, and are subject to biases
(e.g., social desirability) and self-awareness (Annet, 2002).
Subjective measures can also be intrusive, and it can be diffi-
cult to obtain reliable estimates in real-time (which is a neces-
sity for adaptive systems).

We examine whether a secondary task-performance mea-
sure of workload can predict moment-to-moment variation in
within-person primary-task performance. The Detection
Response Task (DRT; Innes et al., 2019; Young, Hsieh, &
Seaman, 2013) provides an objective, continuous measure of
residual human capacity that is assumed to be inversely relat-
ed to the proportion of resources allocated to the primary task.
DRT has been used successfully in many applied contexts,
including driving (Strayer et al., 2015) and helicopter flight-
simulators (Innes, Howard, Thorpe, Eidels, & Brown, 2020),
to provide an objective measure of workload that taps into
residual processing capacity (Palada, Neal, Strayer, Ballard,
& Heathcote, 2019). In addition to being an objective measure
of workload, the DRT is an analogue to ancillary activities
associated with monitoring displays in work contexts (e.g.,
detecting event onsets). The DRT can thus tap into real-time
fluctuations in workload, and can be naturally applied in many
real-world tasks, making it an ideal choice for the present
study.

We consider both workload concurrent with performance
(reflecting current spare resource capacity) and workload
preceding a given trial. Recent work suggests there can be
lingering effects of workload for some time after completing
a demanding task (Bowden, Loft, Wilson, J. Howard, &
Visser, 2019), which might therefore be predictive of perfor-
mance independent of direct resource conflict. This might
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reflect depleted resources that take time to recover (e.g.,
Baumeister, 2014), ongoing sensitivity to opportunity costs
(Kurzban et al., 2013), or slow reallocation of resources. We
also include a between-subjects workload variable to deter-
mine whether people with a higher average workload perform
worse overall (as suggested by, e.g., Hockey, 1997;
Humphreys & Revelle, 1984). Further, in some cases a work-
load tool such as the DRT may simply not be available, and
instead performance is interpreted as a workload proxy
(Wickens, 2002). In many other cases, actual performance
will not be known in real-time. We therefore include a prior-
performance measure to allow assessment of how both work-
load and prior performance are related to current performance
when both are known. This is an important contribution over
and above prior work.

Our study presents several other important novel contribu-
tions. First, we control for performance decrements related to
changes in task difficulty. This allows interpretations of the
workload-to-performance relationship to be independent of
task-related effects. Second, we allow individual-level slopes
on our regression parameters. In this way, we can not only
determine the “group,” or “average,” effect of individual
workload on individual performance, but also determine the
homogeneity of these individual-level effects (in other words,
to determine whether or not there are individual differences in
the effect of workload on performance). Conceptually, adap-
tive systems assume relative homogeneity in how humans are
affected by workload. Individual differences would reduce the
generalizability of adaptive systems, as they would need to be
tailored to individual operators (beyond simply adjusting for
mean performance), for example, if one operator performs
better under load and another performs worse. If there are
individual differences in the relationship between workload
and performance these could be shown by variability in indi-
vidual coefficients. Therefore, we provide a novel empirical
test of the homogeneity of workload-performance
relationships.

Method

Participants

A total of 133 undergraduate psychology students from the
University of Newcastle participated in an online experimen-
tal session and were reimbursed with course credit. The sam-
ple was a convenience sample and total sample size was based
on sign-ups within the study period (and is comparable or
larger than similar previous studies, e.g., Howard et al.,
2020). In order to minimize the potential for the identification
of individual participants within our data set (openly available
on the OSF at https://osf.io/6me5z/), our online data collection
system was anonymous, and did not involve the collection of

any potentially identifying demographic information. The
study was approved by the Human Research Ethics
Committee of the University of Newcastle.

Tasks

Participants completed a dual-task paradigm. The primary
task was to track objects moving on the screen (MOT), with
a secondary detection task appearing at the top-center of the
experiment window at random intervals (DRT), as illustrated
in Fig. 1. The timelines of the MOT and DRT are illustrated in
Fig. 2. Both tasks were administered on the participant’s com-
puter concurrently, with the DRT stimulus displayed at the top
of the MOT display area.

Moving object tracking (MOT) task

TheMOT required participants to track the movement of zero,
one, or four small target discs among a set of distractor dots.
The number of disks to be tracked (tracking load) was consid-
ered a workload manipulation, validated in previous studies
(Innes et al., 2019; Innes & Kuhne, 2020). There were always
ten moving discs on display, and non-target (distractor) discs
were colored red for the entire MOT trial. The to-be-tracked
discs were initially colored blue to identify them as “targets.”
All dots moved around the display area for 15 s and did not
require input from the participant. After 3 s from movement
onset, the target dots changed color from blue to red, and the
participants were required to track their motion. Each disc was

Fig. 1 Example of concurrent detection response task (DRT; red square)
and moving object tracking (MOT; red dots) tasks. The red dots move
around the display for a period of 15 s, while the DRT displays at 3- to 5-s
intervals. The DRT requires an affirmative detection response while the
MOT requires passive tracking during the 15-s period
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circular with a diameter of 14 pixels, corresponding to a visual
angle of approximately 2° at 60 cm viewing distance on a
standard 24-in. monitor. Discs moved randomly within the
display area and could overlap briefly if their paths crossed.
If a disc reached the edge of the 150 x 150 pixel display area it
bounced away randomly. An interrogation stage commenced
following the 15 s, in which each of the ten dots, in turn, were
colored white and participants were asked “was the white dot
one of the targets?”, with a yes/no response indicated using the
keyboard (“O” and “P,” respectively). These questions were
self-paced and continued until all ten dots had been
interrogated.

Detection response task (DRT)

To measure workload, we implemented a variation of the
DRT developed in Innes et al. (2019). Our version of the
DRT is administered according to ISO 17488 (Young,
Hsieh, & Seaman, 2013) presentation intervals, but adapted
to work within a JavaScript program. The DRT stimulus was a
red square that appeared randomly in a rectangle above the
MOT display (Fig. 1). The rectangle was embedded in noise
consisting of uniformly sampled grey or black pixels, consis-
tent with previous applications (Howard et al., 2020).
Throughout the 15 s, the noise above the display was re-
sampled 15 times per second. The red DRT square was
displayed every 3–5 s (sampled uniformly). Participants were
required to respond each time the DRT stimulus was
displayed using the “T” key on the keyboard. The DRT stim-
ulus remained on screen for 1 s unless the participant
responded faster, and the maximum time to respond to the

DRT stimulus was 2.5 s (button presses recorded after this
time were considered misses), meaning participants could re-
spond after the stimulus had disappeared, but there could be
no overlap with the subsequent trial. The DRT display was not
shown outside of the 15-s tracking periods, so there were no
DRT presentations during instructions, breaks, or MOT “in-
terrogation” phase.

Procedure

Participants were recruited online, and participated using their
own device. Eighty participants were presented three tracking
load levels – zero, one, and four dots. A further 53 participants
were only presented with the one- and four-load levels. The
zero-tracking condition was not of interest in the current study
and was initially included for use as a “baseline” condition for
other purposes (e.g., see Innes et al., 2019). As all other as-
pects of the designs were identical between the two task var-
iants, we combined the data for the purpose of the following
analyses. Participants first completed a practice block of five
MOT trials, in which they were required to track two dots and
simultaneously complete the DRT task. Following the prac-
tice, participants who were presented with three load levels
were presented a total of nine blocks of 12 MOT trials (three
blocks for each load level) for a total of 108 trials, each
consisting of 15 s of tracking and the subsequent interrogation
phase. The final 53 participants instead were presented ten
blocks of 12 MOT trials (five blocks per load level) for a total
of 120 MOT trials. In all cases the initial order of the load
levels was randomized, and this ordering was repeated
throughout the trial (this ensured that the tracking load

Fig. 2 Timeline of both concurrent detection response task (DRT) and moving object tracking (MOT) for all studies. Note the DRT stops at the MOT
interrogation phase to ensure there is no response competition
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changed every block). Participants were instructed at the be-
ginning of each block howmany target dots were to be tracked
for that block. As the onset time of the DRT presentation was
random, the trial numbers slightly varied, but on average there
were between three and six DRT trials in a 15-s tracking
period. Each MOT trial proceeded as described in Fig. 2.
Response times (RTs) and accuracy (correct/incorrect) were
recorded for DRT trial, and eachMOT interrogation (accuracy
for the MOT was then summarized as “number correctly clas-
sified out of ten”).

Results

Prior to analysis, data were excluded using several criteria.We
excluded all data from blocks requiring no tracking. The out-
come for analysis was tracking performance, and errors in
blocks requiring no tracking are likely fundamentally distinct
from failures on tracking blocks. We excluded data from four
subjects who showed lower than a 70% hit rate on the DRT
across all trials (these participants showed hit rates ranging
from 29% to 53%). We excluded another seven subjects
who failed to respond to the DRT task at all in at least one
block. This left 121 (91%) participants in the final analysis.
All remaining participants showed DRT hit rates above 80%,
with a mean hit rate of 95.85%. The first MOT trial from each
block was excluded since we used lagged variables in the
following regression analysis. After exclusions, there were
9,772 MOT trials (each corresponding to 15 s of tracking)
included in the final analysis. Each trial gave an outcome
variable corresponding to the number of dots judged correctly,
out of 10. Due to the tendency for errors to occur in pairs we
re-expressed the outcome as a proportion out of 5, such that
scoring either 8 or 9 out of 10 was coded as 4/5. We suspect
this tendency resulted from a combination of (a) the partici-
pants knowing the “correct” number of target dots (meaning
they were less likely to knowingly make odd-numbers of mis-
takes), and (b) the nature of the task compounding errors (i.e.,
mistaking one dot for another would generate two errors – a
miss and a false alarm). Our re-coding allows a more parsi-
monious account of “performance” as a linearly decreasing
score.

Descriptive statistics

All descriptive and univariate statistics were performed in
Jamovi (The Jamovi Project, 2020), using the “jsq”
Bayesian Statistics module (Morey & Rouder, 2018). As ex-
pected, RTs to the DRT were slower as tracking load in-
creased (Bayes factor (BF10) > 1,000, Fig. 3). Likewise, hit-
rate to the DRT decreased with tracking load (BF10 > 1,000,
Fig. 3). This replicates our earlier findings that the MOT task
can manipulate workload (Howard et al., 2020; Innes et al.,

2019), and enables us to confidently use DRT-based statistics
as a quantitative measure of “workload.”

Multi-Level Modeling

To examine the unique predictive relationships between work-
load (DRT) and prior MOT performance on current MOT
performance, we fit a series of multi-level binomial regression
models and used model selection to determine the most suit-
able combination of predictor variables. In each model, the
outcome variable was the proportion of MOT dots correctly
classified as target/non-target expressed as a proportion out of
5. For all models, including the null model, we allowed a
random intercept term to capture the base differences in per-
formance across subjects. The models were fit using the
“rstanarm” package of R (Goodrich, Gabry, Ali, &
Brilleman, 2018; see Online Supplementary Materials for
technical details of the model fitting) to allow for Bayesian
parameter estimation and inference, and model selection was
based on WAIC (Watanabe & Opper, 2010). We fit a total of
32 models allowing for all the possible combinations of five
predictors (we provide univariate analyses of each variable in
the Online Supplementary Materials):

1. Tracking Load (difficulty; number of dots to track)
2. Current Workload (workload during the trial)

Fig. 3 Response time (top) and hit rate (bottom) for the detection
response task (DRT) task by tracking load in the moving object tracking
(MOT) task. In both cases the error bars are the 95% credible interval
around the mean
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3. Prior Workload (workload over the past 60–90 s, due to
random stimulus presentation)

4. Average Workload (subject’s mean DRT-RT)
5. Prior Performance (accuracy on the previous trial).

Tracking Load reflects the experimental manipulation
(number of dots-to-track). As this manipulation was designed
to manipulate workload and difficulty, it was naturally expect-
ed to influence performance, and included so that our within-
subject workload effects can be interpreted independently
from task demands. Current Workload was defined as the
average RT on the DRT task within the 15-s period corre-
sponding to the outcome variable. This variable reflects work-
load during the time participants were tracking the dots (see
Fig. 4 for a breakdown of subject-level variables). Prior
Workload was defined as an exponentially weighted moving
average of the RT to the DRT over (up to) the previous 12
DRT trials, weighted toward the most recent trials with a re-
duction factor of 1/n. This variable captures workload prior to
starting the MOT trial, reflecting the possibility for residual
workload impacts. The moving average was computed only
within block, i.e., trials from blocks with a different Tracking
Load were not included in the moving average, and reflects
workload across approximately the past 60–90 s (when fac-
toring in time between MOT trials). We used the value of the
moving average immediately preceding the start of the out-
come MOT trial. Thus, there is no overlap between the two
workload measures. Between-subject workload was defined
as the mean time to detect the DRT for each subject (including
only trials from the one- and four-dot conditions to ensure all
subjects were comparable). Prior Performance is the tracking
performance (accuracy out of 5) on the MOT trial preceding
the outcome trial (note that since we removed the first trial
from each block after lagging, this variable never included
performance on a trial from a different Tracking Load).

Predictors 2, 3, and 5 above relate to individual-level mea-
surements. In line with recent suggestions for best practice
(Grueber, Nakagawa, Laws, & Jamieson, 2011), we

parameterized the coefficients for these predictors such that
they could vary across subjects according to a normal distri-
bution centered on each group-level coefficient. This allowed
the homogeneity of subject-level workload-performance rela-
tionships to be assessed. Once all models had been fit sepa-
rately, we used WAIC (Watanabe & Opper, 2010) to select
the best fitting model, accounting for complexity. The major-
ity of the posterior model evidence (WAIC probability =
0.736) favored the model including all predictors. That is,
tracking load, current, prior, and average workload, and per-
formance on the previous trial all accounted for unique vari-
ance in the number of errors on an MOT trial. Each predictor
variable showed very strong evidence for inclusion (WAIC
Probabilities >0.99), except for the Average Workload
(WAIC Probability = 0.738). This suggests that, although all
variables were included in the winning model, there is weaker
evidence for the inclusion of average workload.

Given the strong posterior evidence for the winning, fully
saturated model, we focus exclusively on that model for fur-
ther analysis. Posterior median group level coefficients are
reported in Table 1 with 95% central credible intervals.
Tracking Load showed a negative relationship withMOT per-
formance, indicating that as the number of dots-to-track in-
creased from one to four, tracking accuracy decreased (as
intended by design). Both within-subject workload variables
also show a negative relationship with primary task perfor-
mance. The coefficient for Current Workload was approxi-
mately 1.5 times that of Prior Workload. As these variables
are on the same scale, this indicates that workload during the
performance period is a stronger predictor of performance
than workload in the 60–90 s preceding the MOT trial. For a
100-ms increase in DRT-RT (i.e., increased workload) during
the MOT trial, performance on the subsequent MOT trial is
expected to decrease by approximately 7.1% (assuming all
other variables remain fixed). For Prior Workload, the corre-
sponding decrease would be 4.8%. The subject-level coeffi-
cients for Current and Prior Workload were correlated
(Pearson’s r = 0.413, BF10 > 1,000) suggesting participants

Fig. 4 Graphic representation of the three within-subject variables used
in the regression analysis. Each rectangle represents a 15-s moving object
tracking (MOT) trial. The outcome variable is performance on the darker
“outcome” MOT trial. Current Workload was defined as the detection
response task (DRT)-response time (RT) within the outcome trial. Prior

Workload was defined as an exponentially weighted average of the pre-
vious 12 DRT trials (which could cover up to around two to four prior
MOT trials depending on the random sequence). Prior performance was
defined as the score (out of 5) on the MOT trial prior to the outcome trial
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who were more impaired by workload during the trial also had
stronger “residual workload” effects on performance.

Performance on the previous MOT trial was positively re-
lated to performance on the current MOT trial, even when
accounting for task difficulty. For every additional dot correct-
ly classified (out of 5) on the previousMOT trial, performance
on the following MOT trial is expected to increase by 15%,
according to the model coefficient. The coefficient for
Average Workload is quite high and, interestingly, positive.
This suggests subjects with higher average workloads perform
better on the tracking task. However, the credible interval for
this parameter is very large, and crosses zero. Therefore, our
analysis is inconclusive, but suggests that between-subject
effects of workload on performance are likely to be minor at
best.

All three subject-level effects were remarkably consistent
at the individual-subject level. To reiterate – we allowed each
i n d i v i d u a l p a r t i c i p a n t t o h a v e a u n i q u e
workload->performance (or prior->future performance) slope.
We extracted the subject-level parameter estimates for each of
the three effects (current and prior workload, and prior perfor-
mance), and over 95% of subject-level estimates were in the
same direction as the corresponding group estimate (this is
clear from the abundance of red box-plots in panels 1–2 of
Fig. 5, and blue box-plots in panel 3). These parameter esti-
mates were of similar magnitudes. This suggests that the de-
gree and direction of workload-performance decrements is
relatively consistent between subjects, and there are few indi-
vidual differences.

Discussion

Using a sophisticated multi-level modelling approach, we
have demonstrated that real-time workload fluctuations at
the within-person level are predictive of changes in an indi-
vidual’s own performance. Evenwhen controlling for changes
in task load, fluctuations in workload during the time of

performance predicted changes in performance on a tracking
task. This is consistent with resource trade-off theories
(Norman & Bobrow, 1975; Wickens, 2002), as well as recent
modelling efforts (Palada et al., 2019). Extending prior find-
ings using subjective workload assessments (Loft et al., 2018;
Mracek et al., 2014), we further demonstrate clear residual
effects of objectively measured workload on within-person
performance on a tracking task. Prior Workload (workload
across prior 60–90 s) accounted for unique variance not ex-
plained by residual-capacity theories alone. This builds on
previous work showing workload and driving performance
do not return to baseline immediately after disengaging from
a cognitively demanding task (Bowden et al., 2019; Turrill,
Coleman, Hopman, Cooper, & Strayer, 2016). The magnitude
of current and prior workload effects was correlated at the
subject-level, suggesting a generalized susceptibility to
workload-based impairment. In a novel contribution, we dem-
onstrated that the directionality of the effects was remarkably
consistent (over 95% of subjects showed negative workload-
performance relationships). This homogeneity, combined
with the correlation between current and prior workload, sug-
gests a generalizable “workload impairment” that is relatively
unaffected by individual differences. This knowledge allows
more certainty in the conclusion that workload negatively in-
fluences performance for most people and that adaptive sys-
tems could potentially reliably monitor operator workload in
order to adjust task demands.

Performance on the MOT trial immediately preceding the
outcome trial was also predictive of performance (also consis-
tent across individuals). This result is particularly intriguing as
each trial was entirely independent, so auto-correlation of per-
formance is not guaranteed. Indeed, identifying the detrimen-
tal effects of workload and performance preceding the out-
come trial is the most important contribution of the present
study. If variations in workload or performance can be detect-
ed early (prior to a task period of interest) and are known to
propagate performance impairments forward in time, adjust-
ments could be made to an information display, task schedul-
ing, automation provision, or the division of task-load be-
tween operators, to reduce the destructive effect of excess
load. This motivates the continued development of “opera-
tor-state triggers” for adaptive systems (Feigh et al., 2012;
Rouse, 1988). While both past workload and past perfor-
mance predicted unique variance in tracking performance, it
is often true that only one of these variables is known, and
systems must therefore adapt as necessary. In some domains,
performance is difficult to quantify, but it may be possible to
monitor workload, for example by using physiologically de-
rived workload estimates such as heart rate variability or elec-
troencephalography (for reviews, see Charles & Nixon, 2019;
Hughes, Hancock, Marlow, Stowers, & Salas, 2019), to drive
well-timed work design system adaptations. In practice, how-
ever, adaptive systems have proved to be difficult to design,

Table 1 Group-level posterior median parameter estimates with 95%
central credible intervals

Parameter Median 2.5% 97.5%

Tracking Load -2.041 -2.117 -1.965

Current Workload -0.738 -0.949 -0.529

Prior Workload -0.491 -0.781 -0.207

Average Workload 0.820 -0.150 1.791

Prior Performance 0.144 0.106 0.181

*Larger absolute values imply a stronger effect (although not all variables
are on the same scale). Negative values reflect a negative association (e.g.,
the negative slope of workload implies performance decreases as work-
load increases)
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have so-far provided only marginal improvements to perfor-
mance in the laboratory (e.g., Chen, Visser, Huf, & Loft,
2017; Sauer et al., 2012), and arguably limited operational
advantage in real-world contexts. Thus, while our results dem-
onstrate workload can be measured and used to predict per-
formance decrements, further work is needed to establish the
efficacy of operator-based adaptive systems.

Our results were mixed regarding between-person work-
load effects (i.e., do between-person variations in capacity
influence performance?). Model selection showed that the
model including such effects was preferred. However, the
positive association of between-subject load and performance
in that model was the opposite to that predicted by resource
theories. There was also a large amount of variability in the
posterior estimates of the between subject parameter, and that
variable was associated with weaker evidence than the four
other variables. This leads us to a limitation of the study. A
key goal was to determine the consistency of within-subject
effects. Therefore, we included random slopes on all three of
these variables. This means that our five predictor variables
were not equally “complex” and dropping only the between-
subjects variable would have a negligible influence on model
complexity. The complexity added by the within-subject var-
iables also prevented us from exploring potential interactions,
which may provide additional insight (e.g., do within-person
workload-performance associations manifest more during
higher task loads?). As we have now demonstrated the con-
sistency of within-subject workload-performance

relationships, future research may be able to explore more
complex effects structures by removing the individual vari-
ability in regression coefficients.

Another direction that future research should explore is
how our results generalize beyond the discrete-trial nature of
a laboratory experiment. Although our paradigm was de-
signed to be broadly representative of work contexts such as
air traffic control and maritime surveillance, ultimately it is
still a discrete, trial-based task. In the real-world, tasks are
most often continuous in nature (e.g., air traffic control). In
such tasks, performance may not be measured in such binary
“correct” or “incorrect” terms, but may instead be expressed
as a continuous deviation from some target (e.g., absolute
distance from a target altitude in a flight simulator). Real-
world tasks often invoke resources from multiple task modal-
i t ies , which may increase the complexity of the
workload->performance relationship due to distinct resource
pools (Wickens, 2008). It should also be noted that some
theories posit a distinct time-dependent component to the fluc-
tuations in within-person workload (e.g., Grier et al., 2003)
and may therefore make different predictions if the time-scale
of performance were changed. While our results converge
with those of other authors using much longer tasks (e.g.,
Loft et al. 2018), further research may seek to directly target
fatigue and other time-sensitive aspects of workload to assess
their unique interactions with task performance.

Ultimately, our study presents novel evidence that in-
creased within-subject workload does indeed impair one’s

Fig. 5 Posterior estimates of subject-level slopes on current and prior
workload, and prior performance. Box-plots reflect the median (bold
line), 25% and 75% intervals, with whiskers extending to the 2.5% and

97.5% intervals. Boxes are colored based on the median value (red
reflecting a negative association with performance, blue a positive
association)
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own performance. Our sophisticated modelling approach
allowed us to determine that several types of workload and
performance measures account for unique variation in perfor-
mance on a tracking task. These results have fundamental
relevance to applied human factors However, these results
are more broadly relevant to the psychological community.
We demonstrate clearly that fluctuations in workload indepen-
dent from the task demands accounted for significant variation
in performance in a lab task. Our results reinforce the impor-
tance of workload as a general construct that should be con-
sidered in any study of human cognition and performance.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13423-021-01961-6.

Data availability The data and supplementary materials are available on
the Open Science Foundation at https://osf.io/6me5z/.
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