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Abstract

With the advancement of technologies like in-car navigation and smartphones, concerns around how cognitive functioning is
influenced by “workload” are increasingly prevalent. Research shows that spreading effort across multiple tasks can impair
cognitive abilities through an overuse of resources, and that similar overload effects arise in difficult single-task paradigms. We
developed a novel lab-based extension of the Detection Response Task, which measures workload, and paired it with a Multiple
Object Tracking Task to manipulate cognitive load. Load was manipulated either by changing within-task difficulty or by the
addition of an extra task. Using quantitative cognitive modelling we showed that these manipulations cause similar cognitive
impairments through diminished processing rates, but that the introduction of a second task tends to invoke more cautious
response strategies that do not occur when only difficulty changes. We conclude that more prudence should be exercised when
directly comparing multi-tasking and difficulty-based workload impairments, particularly when relying on measures of central

tendency.
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Introduction

Multitasking is the way of modern life. At work, we have
several screens and can communicate with collaborators all
over the globe. On the go, we can stay connected through
in-car technologies like hands-free mobile phones, touch
screens, heads-up-displays, and voice-controlled emails.
However, Strayer and colleagues (Cooper, Ingebretsen, &
Strayer, 2014; Strayer et al., 2013) have shown that these
technologies are associated with a significant increase in men-
tal effort, or cognitive workload. Effortful secondary-task use
is associated with diminished performance in simulated driv-
ing tasks (Drews, Yazdani, Godfrey, Cooper, & Strayer, 2009;
Strayer, Drews, & Johnston, 2003) with impairments roughly
equivalent to those experienced by drunk drivers (Strayer,
Drews, & Crouch, 2006). A recent investigation pointed to
driver distraction from the use of cognitively demanding
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secondary tasks as one of the leading causes of vehicular ac-
cidents on US roads (Dingus et al., 2016). The increasing
prevalence of cognitively demanding technology motivates a
deeper consideration of the factors that underlie increases in
mental workload. We use the term “workload” to refer to the
total amount of a finite- processing resource that a task or set
of tasks uses (thus “high workload” is induced by a more
demanding set of tasks).

Cognitive workload and capacity

Human capacity for processing information is inherently lim-
ited (Kahneman, 1973; Townsend & Eidels, 2011), so in-
creases in workload due to multi-tasking have been assumed
to result from a reduction in the resources available for each
task (see, e.g., Strayer, Cooper, Turrill, Coleman, & Hopman,
2017). This results in a diminished ability to react to changes
in all concurrent tasks. For example, when talking on a mobile
phone, drivers are typically slower to react to hazards (Strayer
et al., 2003), and also exhibit decreased speech complexity
(Drews, Pasupathi, & Strayer, 2008). Reduced performance
in both tasks suggests multi-tasking involves a general reduc-
tion of available cognitive resources rather than a trade-off
effect. The (over)utilization of cognitive resources is known
as “cognitive workload,” and is often defined as the “amount
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of attention that must be directed to a task™ (Lively, Pisoni,
Van Summers, & Bernacki, 1993, p. 2962), such that tasks
requiring more attentional resources impose a higher cognitive
workload.

Importantly, if workload is defined by the amount of atten-
tional resources currently allocated, there is no distinction, in
terms of the workload effects, between one demanding task or
several less demanding tasks (multitasking) that capture the
same total amount of cognitive resources. However, multi-
tasking often affects cognitive processing in unique ways,
such as in Franz, Zelaznik, Swinnen, and Walter (2001),
who found that the degree of dual-task interference in a finger
movement paradigm was related to incongruity between the
task instructions. The aim of the present investigation was to
directly compare “workload” increases resulting from a more
demanding single task (difficulty increases) versus additional
tasks (multi-tasking).

Multi-tasking versus single-task difficulty

There is substantial evidence that cognitive workload increases
both due to multi-tasking and increasing the demands of a
single task (e.g., through a difficulty increase). Multi-tasking
has been shown to cause a general increase in cognitive work-
load across a range of domains using a variety of measures.
Goldberg et al. (1998) found that performing the Wisconsin
Card Sorting Task and a verbal shadowing task simultaneously
led to a significant increase in errors on both tasks, and resulted
in a reduction of prefrontal cortex activity, which the authors
attributed to the task demands exceeding available capacity.
Participants in Rubio, Diaz, Martin, and Puente (2004) self-
reported greater workload when performing both a tracking
task and a memory search task compared to performing either
task alone. Importantly, the lowest reported dual-task load was
still greater than the highest reported single-task load, with this
increase in workload resulting in poorer performance (in both
tasks) when performing both tasks concurrently. Tsai, Viirre,
Strychacz, Chase, and Jung (2007) found increased blink rates
when performing a Serial Addition Task whilst driving, com-
pared to a driving-only condition. And, as discussed earlier,
numerous studies have reported slowed response times from
drivers in a Detection Response Task to highlight the load that
mobile phone or other technology use imposes on drivers (see,
e.g., Strayer et al., 2013; Strayer, Cooper, Turrill, Coleman, &
Hopman, 2015; Strayer et al., 2017; Strayer, Turrill, Coleman,
Ortiz, & Cooper, 2014).

These examples represent just a small fraction of a body of
research demonstrating that completing multiple tasks simul-
taneously has a measurable impact on cognitive workload.
However, in laboratory studies, workload is often manipulated
by altering the difficulty of a single task, such as the “n-back”
task (see Ayaz et al., 2010; Mehler, Reimer, Coughlin, &
Dusek, 2009), without requiring any multi-tasking or task-
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switching. For example, Knoll et al. (2011) manipulated load
through the difficulty of a reading task and found an increase in
workload using EEG (with gamma power increasing with dif-
ficulty). Nourbakhsh, Wang, Chen, and Calvo (2012) rein-
forced these findings using galvanic skin responses. EEG re-
sults, particularly suppression of power in the alpha band and
reduced P300, have also shown workload increases with the
difficulty level of an n-back task (Brouwer et al., 2012), and
have distinguished learning methods that require more cogni-
tive resources (Antonenko, Paas, Grabner, & Van Gog, 2010).
These same measures have shown dual-task-induced workload
increases (Holm, Lukander, Korpela, Sallinen, & Miiller,
2009; Lin, Chen, Chiu, Lin, & Ko, 2011). Some of these stud-
ies manipulated workload through single-task difficulty as well
as through combining tasks (e.g., Rubio et al., 2004).

Many studies implicitly equate the workload effects of dif-
ficulty increases with dual-task performance impairments. For
example, Strayer et al. (2006) compared drivers using cell-
phones (a dual-task) with drivers who were affected by alco-
hol (compromising performance in the task without adding a
second task). However, it is unclear whether dual-task-
induced load increases and single-task difficulty manipula-
tions (hereafter “within-task load”) should be equated, and
thus whether studies of cognitive workload relying on one or
the other kind of workload are comparable (or even investi-
gating the same underlying mechanisms). For clarity, we con-
sider multi-tasking, or dual tasking, to include the addition of a
task(s) that requires additional behavioral responses, whereas
a difficulty increase keeps the task instructions the same but
makes it harder. Dual-task performance often incurs a cost
relative to single tasks (Franz et al., 2001), and there is some
evidence for neurological processing differences between sin-
gle and dual tasks (Isreal, Wickens, Chesney, & Donchin,
1980; see Kok, 2001, for a review). In addition, theories that
postulate multiple cognitive resource pools (e.g., Wickens,
2002, 2008) support a fundamental distinction between
single- and dual-task load increases. We designed a task that
would allow simultaneous manipulation of workload within a
single task (by increasing difficulty) and between multiple
tasks (by adding additional tasks), which we describe shortly.

The detection response task and evidence
accumulation models

To measure workload, we implemented a novel variation of
the Detection Response Task (DRT; Strayer et al., 2014,
2015; ISO, 2016). Note that while the typical DRT is admin-
istered according to an ISO standard (17488), our task was our
own adaptation in an online JavaScript environment, similar
to the version validated by Innes, Howard, Evans, Eidels, and
Brown (Under Review). We use the term DRT due to the
many similarities between our variation and the ISO standard
version, but wish to note the important distinction between the
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two. The DRT is a useful tool for assessing changes in cogni-
tive resource usage in an objective and quantifiable way. The
DRT involves a short, repetitive stimulus (often a light pre-
sented in the periphery) that a participant must respond to
whilst also completing another task(s). When cognitive work-
load increases, response times to the DRT stimulus reliably
increase, as do the proportion of missed DRT signals (Strayer
etal.,2013). DRT response time increases relative to a single-
task (DRT only) baseline have been interpreted as an index of
cognitive workload. The DRT aligns with the “diminished
processing resources” account of cognitive workload, and
thus provides a natural measure for our purposes. However,
although workload is often assumed to reduce processing re-
sources, the account has rarely been tested directly. Cognitive
process-models have been used widely in other areas to un-
derstand the effects of aging (Ratcliff, Spieler, & McKoon,
2000), alcohol (van Ravenzwaaij, Dutilh, & Wagenmakers,
2012), reading impairments (Ratcliff, Perea, Colangelo, &
Buchanan, 2004) and other factors on human performance.
Specifically, these models allow researchers to test whether
changes in the observed speed and accuracy are driven by
sheer information-processing speed or by other factors, such
as caution. For example, Ratcliff et al. (2000) showed that
older adults tend to be slower than their younger counterparts
in cognitive tasks because they are careful to respond, and that
older adults are not necessarily slower at processing informa-
tion in these tasks. Importantly, accumulator models can tease
apart the different mechanisms underlying response times,
allowing inferences on the cognitive process instead of the
observed performance.

Changes in response latency across conditions and subjects
could be the outcome of numerous factors, such as the quality
of the signal relative to noise, variability in the time for stim-
ulus encoding and motor preparation, or the tendency of some
individuals to be more cautious than others. Each of these
mechanisms could cause a similar change in mean response
time, but have profoundly different implications. For example,
increases in DRT response times with an increase in the num-
ber or complexity of tasks have been assumed to reflect a
reduction in available cognitive resources (e.g., Strayer
et al., 2017; Thorpe, Nesbitt, & Eidels, 2019), implying that
the primary task (i.e., not DRT) has become more cognitively
demanding. In an evidence accumulation framework (e.g.,
Evans & Wagenmakers, 2019; Ratcliff, Smith, Brown, &
McKoon, 2016) this would be reflected by a diminished pro-
cessing speed (often referred to as “drift rate”; e.g., Brown &
Heathcote, 2008), since the drift rate defines how efficiently
evidence is sampled from a stimulus. All things held constant,
a higher drift rate leads to a faster process, which might imply
there are more resources available. However, increases in re-
sponse time can also be caused by more cautious responding,
or a change in non-decision-related process time (e.g.,
stimulus encoding; Brown & Heathcote, 2008; Ratcliff,

1978), or different combinations of the above. Therefore, in-
creases in DRT mean response time with an increasing num-
ber or complexity of tasks may not necessarily reflect an in-
crease in cognitive demand, as cognitive demand is only one
of the different theoretical mechanisms that can cause a
change in mean response time.

A recent investigation of the effects of different driving
conditions on workload concluded that changes in DRT mean
response time did not actually reflect changes in information
processing, suggesting that changes in DRT mean response
time may not reflect changes in workload (Tillman, Strayer,
Eidels, & Heathcote, 2017). Using a driving simulator,
Tillman et al. found that drift rate changes were not needed
to explain increased DRT response times resulting from con-
versations with either passengers or via a mobile phone, and
instead, only threshold and non-decision time varied between
the conditions. This result is surprising given the traditional
interpretation of the DRT as picking up residual resources,
which implies that any changes in DRT mean response time
should be the result of increases in workload, and therefore,
decreases in drift rate. As such, a secondary goal of the present
work was to directly test whether this common measure of
cognitive workload actually captured changes in processing
speed. We provide evidence that it does so, confirming the
DRT as a suitable tool for the present endeavor. We discuss
Tillman et al. further in the Discussion.

In the current study we employ evidence accumulation
modeling to distinguish these effects separately for dual-task
versus difficulty-based workload changes. Our chosen model
(linear ballistic accumulation (LBA); Brown & Heathcote,
2008) allows changes in response time to be partitioned into
separate components and thus give a more complete account
of'the cognitive impacts of particular manipulations. We apply
a modified one-boundary model in Study 1, and adapt our
tasks in Study 2 to be amenable to full two-choice modeling
for added robustness. To address whether the cognitive causes
of increases in cognitive workload differed between within-
and dual-task manipulations, we developed a novel task in
which participants tracked moving objects in the Multiple
Object Tracking (MOT; e.g., Pylyshyn & Storm, 1988) task,
while simultaneously responding to a peripheral stimulus that
allows measurement of left-over resources, the DRT (Strayer
etal., 2013). The MOT task had three levels of difficulty — no
tracking (i.e., do not track any objects), low (track 1 object),
and high (track 3 or 4 objects). Critically, the no-tracking
condition requires no participant involvement, so DRT perfor-
mance on the no-tracking MOT condition measures single-
task load. Conversely, DRT performance in the low and high
MOT load conditions measures multi-tasking load (and the
two can be compared to directly assess the effect of difficulty
increase, with multi-tasking held constant). Adjusting the
number of dots-to-track in an MOT task is a commonly ap-
plied difficulty manipulation (see e.g., Cavanagh & Alvarez,
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2005; Drew, Horowitz, & Vogel, 2013). Notably, the DRT
component remained the same for all trials, and responses to
the DRT component were the dependent variable for the
modelling analyses. Thus any changes to the response time
or lapses (misses) to the DRT can be attributed to the manip-
ulation of load via the tracking task. We applied the LBA
(Brown & Heathcote, 2008) model to our data.’

Our design allowed the mechanisms accounting for the in-
crease in workload to be quantified, and compared between
single and dual tasks. We used both a standard DRT (respond
when the DRT is displayed, Study 1) and an adapted DRT that
required a choice between two DRT signals (red or blue, Study
2). The latter task was introduced to facilitate the application of
more robust evidence accumulation modeling, among other
benefits. When choices involve two decisions, parameter esti-
mates are better identified (Ratcliff & Strayer, 2014). To fore-
shadow the outcome, our modelling results suggest the follow-
ing. First, that completing a simultaneous second task affected
workload in a qualitatively different way to changing the dif-
ficulty within the existing set of tasks. Second, that changes in
DRT response time capture changes in workload by reflecting
decreases in processing rate — a finding that has often been
assumed, but has not been borne out empirically to date.

Method - Study 1
Participants

Fifty-two undergraduate psychology students from the
University of Newcastle were reimbursed with course credit.
Participants were required to have normal or corrected-to-
normal vision and be able to read English. Participants com-
pleted the experiment online, without supervision from an
experimenter, which they could only access through the
university’s online study participation system. In order to min-
imize the potential for the identification of individual partici-
pants within our data set (openly available on the OSF at
https://osf.io/ebSap/), our online data collection system was
anonymous, and did not involve the collection of any
potentially identifying demographic information.

Tasks

Participants tracked objects moving on the screen (MOT) while
also responding to a red frame that appeared at random intervals
(DRT), as illustrated in Fig. 1. The timelines of the MOT and
DRT are illustrated in Fig. 2. Both tasks were administered on

! Note: We also applied the Racing Diffusion Model (Tillman & Logan,
2017), which was applied to similar data by previous authors (Tillman et al.,
2017). The results of this model were qualitatively the same as the LBA, and
the LBA was preferred by WAIC in all cases. Hence, for brevity, we only
report the LBA analyses.

@ Springer

the participant’s computer concurrently, with the DRT stimulus
displayed as a red border around the MOT display area. The
MOT required participants to track the movement of zero (base-
line), one (low load), or four (high load) small discs for a period
of 15 s. These discs were initially colored blue to identify them
as “targets” to be tracked, and turned red after 3 s so they were
no longer distinctive from the crowd of other red discs (non-
target foils). This procedure ensured participants had to effort-
fully track the moving objects rather than the color. There were
always ten discs in total, and non-target discs were colored red
for the entire 15 s. Each disc was circular with a diameter of 14
pixels, corresponding to a visual angle of approximately 6° at
60-cm viewing distance. All discs moved within the display
area at a frame rate of 15 frames/s for the duration of a trial,
and movement direction was random (instantiated by randomly
selecting locations for the dot to move to). Discs could overlap
briefly if their paths crossed, and discs bounced randomly away
if they reached the edge of the display area (a 150 x 150-pixel
square centered in the middle of the screen). At the beginning of
the experiment, instructions made clear that when zero objects
were to be tracked participants only needed to respond to the
DRT and could ignore the moving dots.

The DRT stimulus was a red rectangle that formed a border
around the MOT display area. Stimulus presentation adhered
to ISO 17488 (Young, Hsieh, & Seaman, 2013), with the DRT
being displayed every 3—5 s (sampled uniformly). The maxi-
mum time to respond to the DRT stimulus was 2.5 s (button
presses recorded after this time were considered misses). The
stimulus displayed until the participant responded or for 1 s,
whichever was shorter. The DRT display was not shown out-
side of the 15-s tracking periods, so there were no DRT pre-
sentations during instructions, breaks, or MOT decision time.

Procedure

Participants were recruited through an online system for
course credit. After signing up, participants completed a 45-

Fig. 1 Illustration of the concurrent display of the Multiple Object
Tracking (MOT; red dots) and Detection Response Task (DRT; red
border) displays. The DRT component flashed on intermittently and the
red dots moved around the display randomly throughout a trial
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Fig. 2 Timeline of both Multiple Object Tracking (MOT) and Detection Response Task (DRT) tasks for all studies. Note the DRT stops at the MOT

interrogation phase to ensure there is no response competition

min online experiment. Participation required a computer
with access to an Internet browser and a keyboard, but
other factors (e.g., screen size, light levels) were outside
of the experimenter’s control. After initial instructions re-
garding both tasks, a practice block consisting of three
MOT trials (of 15 s each), with a tracking load of two
moving dots, was presented. On each MOT trial, initiated
by the participant, the dots to be tracked (targets; zero, one,
or four during the experiment, or two in the practice block)
were initially colored blue, and the other dots were all
colored red. The dots then moved smoothly around the
display area for 15 s. After 3 s from movement onset the
target dots’ color changed from blue to red, and the partic-
ipants were required to keep track of the targets. During the
15 s, the DRT (a red square bordering the MOT display
area) was presented every 3-5 s, and required a key-press
response (“T”). After the 15-s tracking period finished, the
DRT presentation stopped, the dots stopped moving, and
the interrogation stage commenced: a single dot was col-
ored white and participants were asked “was the white dot
one of the targets?”, with a yes/no response indicated using
the keyboard (“O” and “P,” respectively). This question
was repeated for five randomly selected dots, one at a time.

After three practice trials, participants completed a to-
tal of nine blocks with ten MOT trials in each. There
were three blocks for each level of load (zero, one, four).
The initial order of these three levels was randomized
(e.g., four, zero, one), then this order was repeated three
times. Participants were encouraged to take short breaks
between trials and blocks. The total number of DRT trials
in a block could vary slightly depending on the random
sampling of presentation times within the 3- to 5-s
intervals.

Results - Study 1
Effect of load on DRT measures

Of the 52 participants in Study 1, we excluded ten for inade-
quate performance. Three of these participants had mean re-
sponse times of less than 200 ms, suggesting they were “but-
ton mashing” (recall there are no incorrect responses). Six
participants achieved less than 25% accuracy on the DRT
(three of whom did not respond at all), and one participant
achieved less than 50% MOT accuracy in the non-tracking
condition, suggesting they did not understand the instructions.
To confirm we successfully manipulated workload as assessed
by the DRT, we compared the accuracy and response time of
DRT responses across load levels. There was a very strong
effect of load level on DRT response accuracy (proportion of
hits; BF;o > 10°°), with accuracy decreasing with load. The
same trend held for MOT accuracy (BF( > 10°9), showing
there was no trade-off between tasks. These results are sum-
marized in Fig. 3a. The reverse trend was observed for re-
sponse times, with a very strong increase in response time
across load levels to both the DRT (BF;, > 10'%°) and MOT
(BF 0> 10"°) tasks. These results are summarized in Fig. 3b.

Modeling approach

We applied an evidence accumulation model to assess which
components of the DRT decision-making process changed
across workload conditions. We used the Linear Ballistic
Accumulator (LBA; Brown & Heathcote, 2008), allowing
up to three parameters to vary between tracking conditions
to account for changes in load. Those parameters were the rate
of evidence accumulation for the DRT stimulus (drift rate),
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Fig. 3 Accuracy (top) and response time (bottom) across workload
manipulations in the standard Detection Response Task (DRT) detection
paradigm and Multiple Object Tracking (MOT) task from Study 1.
Manipulating the number of dots to be tracked had a marked effect on
both outcome measures in both tasks. Error bars represent the standard
error of the mean statistic. NB: Note there are two y-axes in the left panel
due to the scale differences between DRT and MOT accuracy

the amount of evidence required to respond to the DRT (de-
cision threshold), and the time taken for perceptual and motor
processes relating to the DRT (non-decision time). In Study 1,
we modelled the DRT responses using a single accumulator,
since the standard DRT has no choice of response to make.
We assumed that missed responses (either no response record-
ed, or a response time exceeding 2.5s) were the result of an
accumulation process that did not reach the threshold before
the termination of the DRT trial (Evans, Steyvers, & Brown,
2018; Ulrich & Miller, 1993). This approach allowed misses
to inform the predictions of the models, and differs from other
recent applications that assume missed responses result from a
separate process, such as the accumulator failing to start (e.g.,
Tillman et al., 2017).

To assess the question of within-task difficulty versus
multi-tasking-based workload changes, we compared experi-
mental conditions in two different ways. To assess the effect
of difficulty increase, we compared response time in the con-
ditions requiring one and four dots to be tracked. These con-
ditions maintained the same multi-tasking load (in both,
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participants were responding to both the DRT and MOT),
whereas the difficulty of the MOT changed. In contrast, to
assess the effect of an additional task we compared response
times in the conditions requiring no tracking and four dots to
be tracked. In the zero dots condition participants only com-
pleted the DRT component of the task, whereas in the four
dots condition they were required to complete both the MOT
and DRT. For inference, we fit all three load conditions simul-
taneously, then tested whether specific parameters changed
between the conditions. Our interest was in whether drift rate,
decision threshold, and/or non-decision time differed between
the lower and higher workload conditions, for either the addi-
tional or within-task manipulations. For example, we tested
for a drift rate decrease under load when adding a task (0 dots
to 4 dots), and separately when increasing difficulty (1 dot to 4
dots).

To determine which parameters changed over manipula-
tions, we used a novel combination of a well-known AIC
weighting procedure (Wagenmakers & Farrell, 2004) and
model averaging, allowing us to obtain a WAIC weight for
whether each parameter changed over each manipulation, tak-
ing into account potential uncertainty in the true model
(Vehtari, Gelman, & Gabry, 2017). We performed this analy-
sis both at the group-level, where inferences have been fo-
cused in previous studies (e.g., Tillman et al., 2017), and the
individual level, in order to assess individual differences in the
effects of parameters. Note that the evidence at the hierarchi-
cal level can often be inflated by relatively few participants
(Evans, 2019; Evans, Bennett, & Brown, 2019; Evans,
Hawkins, & Brown, in press). We present these hierarchical
level posterior probabilities to be consistent with previous
authors, though we tend toward interpreting the individual
data to give a more representative overview of our results.

To determine how the parameters changed, we found the
posterior mean value of the parameter in each sub model, for
each load condition, and determined whether the parameter
changed in a positive or negative direction. We then weighted
the evidence for each change by that model’s posterior WAIC
weight for each subject x sub-model combination. For effi-
ciency, we plot these changes in Fig. 4 as bar plots that show
both the total posterior evidence for any parameter change
(which can be discerned by the height of the gray bars), as
well as the evidence for the direction of changes (represented
by the relative amounts of dark to light gray, where more of
one shade indicates higher certainty of the parameter’s direc-
tion of change). We use the darker gray to represent evidence
for an increase in a parameter over load (i.e., the parameter
has a higher value in the 4 dots condition), lighter gray to
represent evidence for a parameter decrease, and the remain-
der (white) for evidence that the parameter does not change.
For clarity, we have ordered the subject-level posterior plots
by the total evidence for any change, such that the right-most
participants show stronger evidence, and the left-most
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Fig. 4 Hierarchical and individual parameter changes for the LBA model
for both additional-task and difficulty-load manipulations in Study 1. The
left bar of each panel represents the hierarchical weight, and all other bars
show individual subjects ordered by strength of evidence against no-
change (but grouped by their strongest direction of change). Each bar
represents the total posterior weight (summing to 1), with the proportion

subjects show evidence against a change. However, we have
split the subjects into two groups based on whether they show
more evidence for a positive or negative change. To illustrate,
take the top left panel of Fig. 4a. Most subjects show an almost
entirely light gray bar, which means most subjects show (a)
strong evidence that the parameter (drift rate) changes, and (b)
that almost all this evidence points to a decrease under higher
workload. To contrast, the threshold parameter in Fig. 4b
(middle panel) shows an almost equal split of light versus dark
gray, and these bars tend to be shorter. This indicates incon-
sistent evidence at best that threshold changes between the 1-
and 4-dot conditions.

Modeling results

Figure 4 shows group and individual effects of load on model
parameters. If a parameter (say drift rate) shows a consistent
change with the workload manipulation, we would expect to
see the majority of the bars mostly filled with the one shade
(suggesting most participants have strong evidence for the
same change). For Study 1, there was strong evidence at the
group level (posterior weight > .99) that drift rate decreased

of light gray, dark gray, and white reflecting posterior evidence for a
decrease, increase, or no-change in the parameter respectively.
Evidence for “a change” can be observed by taking the total light+dark
gray area. These results do not speak to the magnitude of change, which is
addressed in the following Fig. 5

with load for both within-task-difficulty and dual-task manip-
ulations. Most individual subjects showed strong evidence
that drift changed, and this change was generally a decrease
with either type of workload. This confirms that the DRT is
reflecting the diminished processing resources that are gener-
ally attributed to increased workload. For non-decision time
both manipulations showed strong evidence for a change at
the group level (posterior weight > .99) in both models, but at
the individual level evidence tended to be equally split be-
tween “no-change” evidence, and evidence for positive and
negative changes. These results suggest some individual var-
iability in the non-decision-time parameter. Examination of
the posterior parameter distributions showed the change in
non-decision time was very small compared to the other pa-
rameters, and as such, it is likely only capturing minor varia-
tions in the response-time distributions as other parameters are
allowed to change.

Interestingly, opposite changes in threshold were observed
at the group level for the additional task manipulation (in-
crease — posterior weight > .99) and difficulty manipulation
(decrease — posterior weight > .99). The individual subject
results show a clear threshold increase with the additional task

@ Springer



944

Psychon Bull Rev (2020) 27:937-951

manipulation, but relatively little evidence for any threshold
change in the difficulty-only manipulation (with posterior ev-
idence for and against a change ~0.5, and the direction of
change approximately 50-50 split between positive and neg-
ative across subjects). These results suggest that a threshold
change is only really apparent when workload is manipulated
by the addition of a task — and the threshold parameter in-
creases in that case.

The above results speak to the certainty and direction of the
parameter changes, but tell us little about the relative magni-
tude of those changes. To understand the parameter changes
better, we fit a single-accumulator LBA model where each of
the three parameters (drift rate, threshold, non-decision time)
were allowed to freely vary between each of the three tracking
levels. This was based on the above finding that all three
parameters varied between at least two of the conditions. We
then examined the group-level posterior parameter distribu-
tions directly. We plot the posterior distribution of standard-
ized changes in parameters. Thus, if most of a distribution is
far from zero, there is evidence for a larger change (which is
comparable between parameters).

Figure 5 shows that drift rate steadily decreased with
increased levels of load regardless of the manipulation
(i.e., rate decreases with difficulty (1 vs. 4 dots) and an
additional task (0 vs. 4 dots)). Posterior p—Values2 showed
high certainty for a decrease in drift rate from tracking 0
tol (p=.044) to 4 (p <. 0001), meaning a large propor-
tion of posterior samples show drift rate decreasing with
any increase to the number of dots to be tracked. In Fig. 5
we also observe a less pronounced but clear threshold
effect, such that threshold increases from the “no-track-
ing” condition to either level of tracking, but does not
substantially differ between those levels.® Posterior p-
values showed high certainty for an increase in threshold
for both additional task comparisons, 0-1 (p < .0001) and
0-4 (»p = 0.016), but p = .64 for the 1-4 difference (sug-
gesting no particular threshold change in either direction
was supported). This is consistent with the mixed individ-
ual level posterior weights reported above, and also shows
that the threshold change occurs with the addition of both
an easy (1 dot) and da ifficult (4 dot) task. For non-
decision time, the standardized parameter distributions
were very small, with almost no discernable deviation
compared with the other parameters, so we omit them
from the figure. We can conclude that multi-tasking and
difficulty increases seem to differentially affect the thresh-
old, but not drift rate, of processing in the DRT,

2 Note we frame posterior p-values as a test against the direction reported, so
that a small p-value corresponds to high certainty. We report this way to be
consistent with traditional frequentist p-values.

3 We plot standardized parameter distributions, so the magnitude of changes
between drift and threshold is directly comparable.
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Fig. 5 Posterior parameter distributions for each load level for drift (dark
gray) and threshold (blue) parameters. These results were derived from a
single-bound LBA model allowing each parameter to vary freely between
all three tracking conditions. Parameters were standardized by subtracting
the mean value across the combined posterior (for drift and threshold
separately) from each posterior point. Each violin reflects the density of
the standardized posterior, and the 5th, 25th, 50th, 75" and 95th quantiles
(from bottom to top) are marked with solid lines

suggesting a small but important strategy difference be-
tween these manipulations.

Interim discussion

In Study 1 we found evidence for a load-induced decrease in
drift rate regardless of the type of load manipulation. This
aligns with the “residual capacity” interpretation of both the
DRT (Strayer et al., 2013, 2014, 2015; Thorpe et al., 2019)
and workload more generally (Kahneman, 1973), and affirms
the use of the DRT to address workload-based questions. We
also uncovered an interesting distinction between workload
induced by the addition of a task (multi-tasking; in our case
the addition of a tracking task to the standard detection DRT),
and workload increased only through increasing the difficulty
within a single task (in our case increasing the number of dots
to be followed within a tracking task). In the former, the in-
crease in response time as workload increased was associated
with both a decrease in processing speed and an increase in
the decision threshold; commonly considered a measure of
caution (Brown & Heathcote, 2008). This threshold change
was not found for the difficulty increase manipulation.
Importantly, adding both a relatively easy (1-dot) or more
difficult (4-dot) task had the same effect on threshold, sug-
gesting we have observed a multi-tasking specific strategy
adjustment. The implication of this finding is that the cogni-
tive mechanisms underpinning workload changes are not
equivalent between manipulations. Instead, our findings sug-
gest that adding a task results in participants changing their
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response strategy, whereby they increase their caution to com-
pensate for the expected load associated with an additional
task. In contrast, increasing difficulty within a task seems to
result in most participants remaining equally cautious in their
DRT responses, suggesting that they do not explicitly react to
this increase in difficulty by changing their strategy. This
strategy change may reflect some trade-off between maintain-
ing adequate performance over all tasks versus maintaining
adequate performance within each task.

Following the encouraging results of Study 1 we tum to
address in Study 2 a few potential concerns. First, although we
identified a clear distinction between additional and within-task
load manipulations in terms of the effect each had on the thresh-
old parameter of our models, it is possible that presenting all
three conditions (i.e., our within-subjects design) may have
changed the way participants would have responded to these
same manipulations in isolation. Second, modeling single-
response decisions can be problematic due to the lack of choice
data to precisely constrain parameter estimates. Finally, it could
be argued that the baseline “no-tracking” condition in Study 1
was not an ideal comparison because the relative size and sa-
lience of the DRT stimulus ensured the task required little cog-
nitive effort from participants. In Study 2 we modified the DRT
task such that it required a choice response (color of the stimu-
lus). This allowed parameter estimates to be constrained by both
response time and choice data, and also required a more cogni-
tively engaging decision to be made. We also degraded the DRT
stimulus by significantly reducing its size and embedding it
within noise, with the aim of ensuring even the no-tracking
condition required cognitive effort from participants. To address
potential concerns over the within-subjects design of Study 1,
we also separated the additional and within-task load manipula-
tions into separate participant groups for Study 2, using a
between-subjects design. This ensured that the effects of one
manipulation were independent of the other, and would provide
a useful replication between the two designs.

Method - Study 2
Participants

A total of 127 undergraduate psychology students from the
University of Newcastle participated and were reimbursed
with course credit. Two versions of Study 2 were run, one
with an “additional-task™ (n=57) workload manipulation,
and one with a “within-task-difficulty” (n=70) workload ma-
nipulation. Participants were randomly assigned to one task or
the other upon loading the experiment page. Participants were
required to have normal or corrected-to-normal vision and be
able to read English. Participants participated online, without
supervision from an experimenter.

Tasks

The MOT task was similar to Study 1, with one important
change. The type of load (within or dual-task) was a
between-subjects manipulation. One group of participants
tracked either one or four dots for the duration of the experi-
ment. Another group tracked zero or three dots. Piloting dem-
onstrated that the jump from zero to four (with no “easier”
tracking condition as a comparison) led to participants
disengaging from the task, thus we reduced the number of
dots shown in that condition.

The DRT task was modified to require choices, rather than
simple detection. The DRT signal was changed to a single
square presented just above the MOT display (see Fig. 6).
This stimulus more closely approximates the hardware DRT
units often used in driving studies, and also facilitated further
manipulations that are not reported here. This stimulus was
embedded in noise consisting of uniformly sampled grey or
black pixels. The mask was designed both to make the choice
component more difficult and to ensure the “no -racking” con-
dition was still cognitively demanding. The major change to
the DRT task was the introduction of the choice component
itself. The DRT signal, presented with the same frequency as in
Study 1, was red 50% of the presentations, and blue 50% of the
presentations (RGB: (255 0 0), and (0 0 255), respectively).

Procedure

Participants were recruited online, and randomly allocated to
either the within- or dual-task-load condition. Otherwise, the
procedure was mostly similar to Study 1. Practice was identi-
cal to Study 1 apart from the DRT task requiring participants
to decide if the DRT was red or blue. During the experiment

Fig. 6 Illustration of the concurrent display of the Multiple Object
Tracking (MOT; red dots) and Detection Response Task (DRT; blue
square) displays in Study 2. The DRT component flashed on
intermittently and the red dots moved around the display randomly
throughout a trial. The DRT stimulus required a choice response (red or
blue) and was embedded in visual noise to make the task more demanding
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participants were presented with eight blocks of 12 MOT tri-
als; four blocks of each load level. The number of DRT trials
varied depending on the participant’s response time and the
random sampling of trials. Blocks alternated between high and
low load, with the initial block randomly selected. Participants
in the within-task load type tracked either one or four dots,
participants in the dual-task load type tracked either zero or
three dots. Participants responded to the DRT stimulus on a
standard QWERTY keyboard by pressing the “Q” button if
the signal was red, or the “W” button if the signal was blue.
Figure 6 shows an example of a trial in progress, with a blue
DRT signal embedded in noise.

Results - Study 2
Effect of load on DRT measures

Online data collection again required stringent inclusion
criteria, to exclude non-compliant participants. Of the 127
participants who completed Study 2, 19 were excluded. Six
participants did not respond to the DRT, and a further four had
less than 25% accuracy. Three participants had a mean DRT
response time of less than 200 ms. The remaining six partic-
ipants showed less than 50% accuracy on the lowest tracking
level in their respective study. After exclusions there was a
total participant pool of 47 participants in the additional task
group, and 61 participants in the difficulty group.

To confirm that we increased the baseline demand of the
DRT stimulus as intended, we first compared the equivalent
tracking levels between Study 1 and Study 2. For the no-
tracking condition, response time to the DRT was slower in
Study 2 (M = 627 ms, SD =213 ms) than in Study 1 (M =390
ms, SD =203 ms), BF;o> 10'%. The same pattern held for the
higher tracking conditions, showing the choice-variant of the
task increased baseline workload substantially. As with Study
1, we compared the accuracy and response time of DRT re-
sponses across load levels as a manipulation check. There was
very strong evidence for a decrease in response accuracy (pro-
portion of misses) in both the additional task manipulation
(BFo > 10*) and the difficulty manipulation group (BF, >
10'?; see Fig. 7). For both manipulations the corresponding
trend again held for response time, with very strong evidence
for an increase in response time across tracking levels in the
additional task manipulation (BF;y > 10**?), and moderate
evidence for an increase in response time across tracking
levels in the difficulty manipulation (BF;, > 1014).

Modeling approach
The modeling approach for Study 2 was simplified by the

between-subjects design. The introduction of the choice com-
ponent (“DRT signals red or blue”) allowed the full
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Fig. 7 Accuracy (left axis) and response time (right axis) of both the
additional task (top panel) and difficulty (bottom panel) workload
manipulations in the choice and Detection Response Task (DRT) para-
digm from Study 2. Manipulating the number of dots to be tracked had a
marked effect on both outcome measures. Error bars represent the stan-
dard error of the mean statistic. NB: Only DRT results are shown here

specifications of the LBA specified by Brown and Heathcote
(2008) to be implemented. This manifested by the introduction
of a second accumulator which corresponded to the erroneous
response (the blue response, if the stimulus was red, or the red
response given a blue stimulus). The red and blue outcomes
were not treated separately for the purpose of modelling; in-
stead we allowed a separate drift rate parameter for the target
and non-target accumulation processes (regardless of which
color was correct on a given trial). We repeated the posterior
model weighting process reported for Study 1 here with the
caveat that we did not have to fix the level of the “other” load
manipulation due to the between subjects design. The below
results, although combined for clarity, contain entirely separate
participant groups for the “between-" and “within-"task-load
manipulations that were modelled independently. The interpre-
tation of the plots is identical to Study 1.

Modeling results

Figure 8 shows group and individual effects of load on model
parameters in Study 2. At the group level there was strong
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Fig. 8 Hierarchical and individual parameter changes for the LBA model
for both additional task and difficulty load manipulations in Study 2. The
left bar of each panel represents the hierarchical weight, and all other bars
show individual subjects ordered by strength of evidence against no-
change (but grouped by their strongest direction of change). Each bar
represents the total posterior weight (summing to 1), with the proportion

evidence that drift rate decreased with load for both manipu-
lations (posterior weight p > .99 for both tasks), and this trend
held for most individuals across both tasks. For non-decision
time the manipulations showed opposite trends at the group
level, with non-decision time decreasing with the addition of a
task (posterior weight > .99 for both tasks), but increasing
with a difficulty-based increase in load (posterior weight >
.99 for both tasks). However, these group weights are
overstated as the most complex model accounted for almost
all of the posterior weight, thus only one parameter direction
could be exhibited. At the individual level both manipulations
showed relatively little evidence for any change, and evidence
was equally split between increase, decrease and no-change.
These results suggest significant variability in the non-
decision time parameter across individuals, and again the
magnitude of these changes was very small.

Importantly, in Study 2 we replicated the finding that in-
creased workload leads to increases in response caution
(threshold) when induced by an additional task, but not for
the within-task difficulty manipulation. At the group level the
additional task manipulation (posterior weight > .99) showed

of light gray, dark gray, and white reflecting posterior evidence for a
decrease, increase, or no-change in the parameter, respectively.
Evidence for “a change” can be observed by taking the total light+dark
gray area. These results do not speak to the magnitude of change, which is
addressed in Fig. 9

evidence for an increase in threshold with load. The group
trends for the difficulty manipulation replicated Study 1, with
strong evidence for a decrease in threshold (posterior weight >
.99) — although again the individual subject results show this is
an overstatement. Only the additional task manipulation
showed strong evidence for threshold changes at the individ-
ual level, and this change was, again, predominantly an in-
crease. As stated earlier, group-level posterior weights can
sometimes be strongly influenced by individual subjects with
extreme evidence for a particular model (see Evans, 2019, for
a brief discussion, and Evans et al., in press, for an example),
and the strong posterior evidence for a change does not speak
to the magnitude of any change (which we address in the
following paragraph). It should also be noted that within the
additional-task group the threshold change was not found in
all participants, leaving room for individual variability in the
effect.

As with Study 1, we examined the posterior parameter
distributions to assess the magnitude of the observed parame-
ter changes. These results generally supported the trends re-
ported in Study 1 and in the weighting analysis of Study 2
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reported above. Figure 9a and b show that drift rate decreases
substantially with increased levels of load regardless of the
manipulation (i.e., rate decreases with difficulty (one vs. four
dots] and an additional task (1 vs. 3 dots)). Posterior p-values
showed high certainty for a decrease in drift rate from tracking
1 to 4 dots (p = .012), and also from 0 to 3 dots (p = 0.018),
meaning a large proportion of posterior samples show drift
rate decreasing with any increase to the number of dots to be
tracked. In Fig. 9a we also observe an apparent threshold
effect, such that threshold increases from the “no tracking”
(0 dots) condition to the “tracking” condition (3 dots). The
posterior p-value for this difference was only p = 0.2, probably
due to the relative uncertainty of the estimated parameters
(note the overlap in the tails of the distribution), potentially
driven by the individual variability noted above. However,
there was no observable difference at all in thresholds for the
difficulty manipulation (p = 0.8), so the qualitative threshold
trends are consistent with Study 1. The non-decision time
parameter again had much smaller effects in both manipula-
tions and is not presented in the figure.

General discussion

In our experiments participants were asked to respond to a
brief visual stimulus. In Study 1 this was a simple detection
task, in Study 2 participants were asked to make a choice
between two color options. While responding to this
detection/choice task we manipulated participants workload
by simultaneously introducing a visual tracking task with sev-
eral levels, with the specific aim of comparing workload shifts
from the “no tracking” condition to either of the tracking con-
ditions (i.e., load induced by the addition of a task) against

0.4 1
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0 3

_0.4.
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Fig. 9 Posterior parameter distributions for each load level for drift (dark
gray) and threshold (blue), for both additional task (a) and difficulty
based (b) workload manipulations. These results were derived from an
LBA model allowing each parameter to vary freely between the two
tracking conditions (the two panels show models fit to different data).

@ Springer

workload shifts from the low to high level tracking (i.e., load
induced by increasing difficulty only). Studies 1 and 2 identi-
fied and replicated several key findings. First, as anticipated,
the primary driver of increased response time to the DRT
stimuli as workload increased was slower processing rates.
In Study 1, the standardized effect of drift rate was much
greater than the equivalent threshold effect (see Fig. 5). This
finding supports the general interpretation of the DRT (see,
e.g., Strayer etal., 2013, 2017), i.e., that increased “workload”
reflects an increasingly diminishing pool of processing
resources.

It is entirely expected that the primary driver of response
time changes in the DRT task is processing speed. The theo-
retical underpinning of the task is that of a shared, limited
capacity pool of cognitive resources (see, e.g., Strayer,
Watson, & Drews, 2011; Thorpe et al., 2019). The drift rate
of an accumulator model “maps the speed of information up-
take” (Voss, Nagler, & Lerche, 2013, p.4), and would natu-
rally be expected to decrease if there were less available pro-
cessing resources. In fact, drift rate has previously been linked
to cognitive workload using the theoretical framework of
Systems Factorial Technology (SFT; Eidels, Donkin,
Brown, & Heathcote, 2010; Endres, Houpt, Donkin, & Finn,
2015; Townsend & Eidels, 2011). Despite this, the only pre-
viously reported analysis of DRT response times using an
accumulator model did not implicate drift rate effects
(Tillman et al., 2017). As such, our identification (and repli-
cation) of lower drift rates as the primary driver of both multi-
tasking and difficulty-based workload is an important contri-
bution to the theoretical landscape of attention and workload.
We also found that workload increases attributable to the ad-
dition of a task resulted in an increased response threshold.
This change was not observed when workload resulted only
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Parameters were standardized by subtracting the mean value across the
combined posterior (for each parameter separately) from each posterior
point. Each violin reflects the density of the standardized posterior, and
the Sth, 25th, 50th, 75th and 95th quantiles (from bottom to top) are
marked with solid lines
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from an increase in difficulty of the same task, but was found
whether the additional task was relatively easy (track 1 dot) or
relatively difficult (track 3—4 dots). In Study 2 we found this
trend held even where the difficulty of the baseline task was
increased (by switching to a choice task) but the tracking task
remained the same.

Our threshold results align with a recent study by Tillman
et al. (2017). Tillman et al. performed a simulated driving
performance study where workload was manipulated by
adding a conversation task (with either a passenger in the
room, or via mobile phone), and measured using the ISO
standard DRT task. While those authors did not find evidence
implicating drift rate in workload changes, their findings do
support our multi-tasking-specific threshold findings.
Specifically, Tillman et al found that compared to the baseline
“driving only” condition, speaking with a passenger or via
mobile phone was associated with increased threshold.
However, there was no evidence that threshold changed be-
tween the type of conversation (in room or via mobile phone) -
a manipulation that would only affect difficulty in their para-
digm. This suggests participants fundamentally adjust their
processing strategy to account for changes in workload when
additional tasks are to be completed concurrently, but not
when difficulty of the current task palette increases.

It is unclear why such a strategy difference arises. One po-
tential explanation (helpfully raised by a reviewer) is that par-
ticipants might be more salient to an addition of a task, whereas
difficulty changes might go undetected. However, in both of
our Experiments two features preclude this explanation. First,
the wording changes between 0, 1, and 3—4 dots were identical.
Participants were not specifically told that there would be an
additional task. Second, no two consecutive blocks had the
same tracking load. Therefore, the participants task demands
changed at every block, yet they only adjusted their thresholds
when moving from not tracking to tracking. It is possible that
more salient instructions (e.g. “now you will work on a more
difficult task™) might change the effect, and future work could
consider this. Another account may be that truly concurrent
performance of tasks is unlikely — instead “multi-tasking”
may in practice be rapid switching between tasks (Salvucci,
Taatgen, & Borst, 2009). Rapidly switching between tasks
comes with a performance cost (Karayanidis, Coltheart,
Michie, & Murphy, 2003), so our observed threshold adjust-
ments might be counteracting these effects. Whatever the ex-
planation, the differential cognitive adjustments made to multi-
tasking and difficulty-based workload increases have important
implications for studies of workload, particularly those
intending to compare manipulations of different types. Both
decreased drift rates and increased threshold can increase re-
sponse times (Ratcliff et al., 2016) - thus response time alone
should not be used to quantitatively compare absolute work-
load levels without deeper investigation (such as the accumu-
lator models applied in the present article).

Why do our drift rate results disagree with Tillman et al.
(2017)? Applying the same accumulator model to conceptu-
ally similar tasks, our results strongly implicate diminished
processing resources as the primary driver of response-time
differences between load levels, while Tillman et al found
workload was entirely captured by threshold. Tillman et al.
suggested their results were consistent with the DRT and
driving/conversation tasks tapping different resource pools.
Our results may then suggest the tasks tapped a shared re-
source pool. The primary difference between our own task
and Tillman et al.’s conversation manipulations are that our
manipulations share modality with the detection task (all our
tasks are visual), whereas conversations and visual detection
tap primarily different modalities (working memory versus
visual). It is plausible that rather than a single shared capacity
pool, a multiple resource pool account of cognitive workload
(Wickens, 2002, 2008), in which different modalities access
different cognitive resources, is more suitable. Under the as-
sumption that there are multiple resource pools, the visual
DRT may be less sensitive when the primary task involves a
non-visual modality, as the visual DRT is unlikely to be ef-
fectively measuring the residual processing resources left over
from a non-visual task. However, further research is needed to
properly assess whether the measurement properties of the
DRT depend on the primary task modality.

A final note is that our reported results rely on our defini-
tion of increasing tracking levels as only influencing the dif-
ficulty of the task. The number of dots-to-track in an MOT
paradigm has often been applied as a difficulty manipulation
in the literature (see, e.g., Cavanagh & Alvarez, 2005; Drew et
al., 2013, for two examples). Although this treatment is com-
monplace, an argument could be made that each additional
dot-to-track constitutes another “task.” We favor the view that
additional tasks require additional behavioral responses (e.g.,
responding to the DRT and tracking any number of dots,
compared with tracking one or four dots). In a similar vein
we recognize that our difficulty changes may not be linear, i.e.
each additional dot may not alter workload to the same degree.
We believe the results of Experiment 1 mitigate this issue,
given the threshold change was found when comparing either
0-1 or 04 dots (suggesting the change was inherent to the
addition of the tracking task rather than the difficulty of that
task).

Conclusion

The primary question addressed in this manuscript was wheth-
er multi-tasking is simply a form of difficulty increase. Our
results strongly suggest that this is not the case. There are
fundamental differences in the way the cognitive processing
system accounts for these two load manipulations. The major
implication of this finding is that the relative workload effects
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of some manipulations should not be directly compared.
Returning to Strayer et al. (2006), they compared the effect
of mobile-phone usage on driving performance (an additional
task) against alcohol consumption (an effect that may make
driving more difficult, but does not add an additional set of
behaviors to perform). Our results suggest such direct com-
parisons may be unwise as the observed response-time chang-
es may not solely result from changes in “workload,” but also
strategic adjustments. Importantly, we have confirmed that the
DRT captures elements of processing capacity through chang-
es in drift rate, thus the traditional interpretation of the mea-
sure is largely unaffected. Our results also hint at deeper the-
oretical conceptualizations of workload (e.g., single vs. mul-
tiple resource pools); however, further work is needed to con-
cretely distinguish these theoretical accounts. Future research
should also investigate more nuanced kinds of workload. For
example, people with high depression scores often fail to ex-
hibit typical cognitive control mechanisms when exposed to
emotionally valanced stimuli (Compton et al., 2008;
Williams, Howard, Ross, & Eidels, 2018), which might sug-
gest the emotional stimuli induce “cognitive overload” in that
group. How such effects fit within the present discussions
remains unknown. Further exploration of how other capacity
limitations, such as the “within-task” capacity measures of
Systems Factorial Technology (such as those observed by
Eidels, Houpt, Altieri, Pei, & Townsend, 2011; Garrett,
Howard, Houpt, Landy, & Eidels, 2019; Howard, Garrett,
Little, Townsend, & Eidels, Under Review) relate to more
general “system-level” workload are also needed.
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